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Abstract
Light clients play a crucial role in blockchain ecosystems by enabling devices with
limited computational resources to participate in on-chain activities. However, achiev-
ing full security typically requires downloading data that scales linearly with the
blockchain’s size. This poses a major scalability challenge as blockchains grow, ulti-
mately undermining the very utility of light clients.

In this work, we propose Mim, a system that leverages succinct non-interactive
arguments of knowledge (SNARKs) to efficiently prove the correctness of commit-
tee rotations in Byzantine Fault Tolerant (BFT)-based light client protocol. Un-
like prior approaches that either compress downloadable data or redesign consensus
mechanisms around zero-knowledge proofs, our solution is generalizable and achieves
verification performance that is independent of or sub-linear in the chain size.

Our core contribution is the use of folding-based SNARKs, a recent advancement that
enables multiple instances of identical NP statements - in our case, committee rota-
tion verifications - to be folded into a single proof. When paired with an appropriate
proving system, this allows us to generate constant-size O(1) proofs of committee
rotation. To further enhance efficiency, we introduce a novel data structure called
the Levelled Merkle Forest (LMF), which mitigates the need to run SNARKs
for every committee rotation. LMF accumulates committee data into hierarchical
Merkle trees, enabling variable-length proofs post-verification.

We evaluate our design on a simulated blockchain modelled after the checkpoint
structure of Sui. Our extrapolated results show that, given sufficient memory, it
is feasible to generate a committee rotation proof in under half a day (without
LMF), faster than the typical one-day checkpoint generation interval. Moreover,
with LMF, proof covering one year of checkpoint data can be produced in under
a week. Concurrently, LMF achieves performance comparable to the Merkle tree
while reducing proof sizes for all of the committed values, making it a practical and
efficient alternative. We conclude by highlighting several promising directions for
future work to further enhance the efficiency and applicability of our system.
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Chapter 1

Introduction

1.1 Problem Outline
Since the introduction of Bitcoin, blockchain technology has evolved into a transfor-
mative force across various industries and communities. Initially popularized as the
underlying framework for cryptocurrencies [YW18], blockchain now powers a wide
range of applications, such as decentralized finance (DeFi) [WPG+23] and health-
care [AME19]. At its core, blockchain is a distributed system in which each node
maintains a copy of all transactions. As new transactions are added, nodes reach
consensus according to a defined protocol, extending the blockchain.

As blockchain technology continues to mature, various types of clients have emerged,
generally falling into the following categories. Full nodes ensure the security of the
blockchain by executing a consensus protocol to agree on the blockchain’s state.
They store a complete copy of the blockchain, including all historical data, and
communicate with other full nodes using the gossip protocol. These nodes possess the
necessary resources to handle the storage, bandwidth, and computational demands
associated with maintaining the full blockchain history. In contrast, light clients
are resource-constrained devices, such as mobile phones or web browsers, which do
not store the entire blockchain and lack the computational power to perform heavy
tasks. Instead, they rely on full nodes to serve as intermediaries, fetching blockchain
data and submitting transactions on their behalf [CBC22].

For instance, the Simplified Payment Verification (SPV) protocol, as proposed in
the Bitcoin whitepaper [Nak08], enables light clients to verify transactions without
downloading the full blockchain. Similarly, Ethereum [ACP+24] employs a light-
client protocol that uses checkpoints and a committee-based mechanism to address
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the blockchain’s fast block generation rate.

Despite being termed light client protocols, these protocols can still be too resource-
intensive for certain lightweight environments. Light clients often need to download
some data, such as the chain of block headers in SPV, which grows linearly with the
size of the blockchain. After downloading this data, clients must also verify that the
chain of headers begins at the genesis block and that each block has been correctly
validated by consensus nodes. This verification process is similarly linear in the size
of the chain. Given that many modern blockchains exhibit high block generation
rates [NAK+22] and that light clients frequently operate in offline phases [CBC22],
this approach becomes impractical in resource-constrained settings.

1.2 Our Approach
This work addresses the aforementioned challenges by developing solutions that en-
able light clients to efficiently download and verify data, with verification time inde-
pendent of the blockchain’s size. The primary objective is to design a secure protocol
that facilitates succinct verification of blockchain states for light clients. Specifically,
we focus on a Byzantine Fault Tolerant (BFT)-based light client protocol in which
a regularly rotated committee maintains a chain of checkpoints. Each checkpoint
includes signatures from a supermajority of the current committee, along with trans-
action data and information about the subsequent committee. In this protocol, the
light client must track committee rotations to verify the corresponding checkpoints.
This design, adopted by several prominent blockchains [ACP+24, RML], plays a
critical role in ensuring both the security and efficiency of light client protocols.

At the core of our approach lies the cryptographic primitive known as Succinct
Non-Interactive Arguments of Knowledge (SNARK). SNARK provides a complete,
knowledge-sound, and succinct proof system for relations expressed as arithmetic
circuits. Notably, they can produce proofs as short as three group elements, regard-
less of the circuit’s complexity [Gro16].

To prove committee rotations, we employ a folding-based SNARK - a variant of
recursive SNARK - that enables the prover to fold multiple instances of a relation
into a single instance. The prover then demonstrates the correctness of the folded
instance, which implicitly proves the validity of all individual (unfolded) instances.
This mechanism allows for the aggregation of multiple committee rotation verifica-
tions into a single proof, significantly improving proving efficiency.

To further accelerate the proving process, we introduce a novel cryptographic accu-
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mulator, the Levelled Merkle Forest, which is integrated into the circuit to verify
the correct construction of the accumulator. This structure enables efficient proof
generation for the existence of an intermediate committee, given a trusted starting
committee (assumed by all light clients) and an ending committee (which the light
client can verify using proof generated by the folding-based SNARK).

We implement our protocol, including the newly introduced LMF data structure, in
Rust with over 8000 lines of code. During this process, we implemented the first open-
source, generic R1CS implementation of the hash-to-curve algorithm in arkworks,
and fixed a critical bug in the emulated field variable that generated unsatisfiable
constraints.

In our evaluation, we show, by extrapolation, that without LMF, our light client
protocol can prove committee rotation in under half a day given sufficient memory
- faster than the typical one-day checkpoint generation time - while maintaining
a constant verification time of around 3 seconds for a committee of 512 members,
regardless of checkpoint size. With LMF, the protocol can produce proof covering one
year of checkpoint data in under a week. We also estimate the memory requirements
needed to deploy the protocol in practice. Simultaneously, we demonstrate that LMF
offers performance comparable to traditional Merkle trees, while its variable-length
proof scheme reduces proof sizes for all of the committed values.

1.3 Contributions
In summary, our contributions are as follows:

• We present, to the best of our knowledge, the first open-source, generic hash-
to-curve implementation for BLS12 curves within the arkworks ecosystem.
Our implementation supports the [WB19] hash-to-curve algorithm and can be
used inside any R1CS gadget defined in arkworks.

• We identify and resolve a bug in the widely-used SNARK library arkworks.
This bug affected the generation of satisfiable constraints during synthesis for
emulated field variables. Our fix enables correct and reliable use of emulated
field variables in arkworks.

• We design a protocol that enables light clients to efficiently verify the security
of received data using folding-based SNARK. Our construction builds on the
security of the underlying IVC scheme, SNARK scheme, and the light client
protocol.
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• We introduce a novel data structure - Levelled Merkle Forest (LMF)
- to accelerate proof generation for folding-based SNARK. This structure,
which may be of independent interest, offers a new paradigm for accumulator
design: it uses a small amount of extra space (constant outside the R1CS
circuit and logarithmic inside) to enable variable-length proofs. We formally
and experimentally analyze the time and space complexity of both the on-
circuit and off-circuit operations of this data structure.

Some of the techniques discussed in this paper have broader applications beyond
committee rotation verification. For example, the hash-to-curve implementation can
be applied whenever there is a need to hash into BLS12 group elements. Similarly,
the LMF data structure can be used as a standard method for constructing Merkle
trees in R1CS, especially when variable-length proofs are favoured. However, this
paper primarily focuses on the verification of committee rotations.

1.4 Overview of Chapters
Chapter 2 provides an overview of the notation used throughout this work, along
with a summary of the background and relevant research.

Chapter 3 reviews key works in the field, analyzing how prior research addresses the
challenges identified in this study.

Chapter 4 introduces the blockchain abstraction used in this work, followed by the
design and security proof of the light client protocol. It describes the interface of
the folding-based SNARK circuit and outlines the design of BLS signature and
committee rotation verification circuits. It also presents the new data structure,
Levelled Merkle Forest (LMF), detailing its algorithms and analyzing the time and
space complexity of both on- and off-circuit operations. The chapter concludes with
the final light client protocol design incorporating LMF.

Chapter 5 covers implementation challenges, with a focus on the R1CS implementa-
tion of hash-to-curve. It discusses how a bug in the arkworks library was diagnosed
and resolved to avoid unsatisfiable constraints, and highlights circuit-level optimiza-
tions that reduce constraint count.

Chapter 6 evaluates the system, analyzing the time and memory costs of the light
client protocols (with and without LMF) and comparing LMF performance against
traditional Merkle trees.

Chapter 7 examines the security of the light client protocol in the presence of forks
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and discusses its practical deployment. It also outlines potential future research di-
rections to improve the system’s applicability, highlighting the associated challenges.

Chapter 8 concludes the paper, summarizing the key findings and contributions.
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Chapter 2

Background

In this chapter, we cover the notations and essential background on blockchains,
elliptic curves, BLS signatures, accumulator schemes, IVC, and SNARK.

2.1 Notation

We use Fq to denote a finite field of size q. Let r
$← Fq denote drawing a random

value from the finite field Fq. We use bold lowercase letters for vectors and bold
uppercase letters for matrices. For a vector v ∈ Fm, we denote the elements of v as
(v0, . . . , vm−1) and use vi to index the ith element of v.

2.2 Blockchain
A blockchain is a distributed system where a group of nodes maintains a copy of an
ordered list of blocks. A block is a data structure consisting of a header and a list
of transactions. The block header contains metadata about the block, including the
hash of the previous block and validity proofs, such as solutions to hash puzzles in
proof-of-work systems.

2.2.1 BFT-Based Light Client Protocol

In a blockchain network, different types of clients exist, such as full nodes and light
clients. Full nodes store the entire history of the blockchain and are responsible for
verifying transaction execution and blockchain consensus. In contrast, light clients
rely on full nodes to fetch the desired blocks and can only verify consensus using
the additional information provided by the full nodes.

6



The type of information supplied by full nodes depends on the underlying consen-
sus protocol. For instance, in the original Bitcoin SPV protocol [Nak08], full nodes
provide all block headers, starting from the genesis block and up to the block re-
quested by the user. To verify the header, the light client begins at the genesis block,
checks whether the next block includes a hash to the previous block, and verifies the
validity proof in the block header.

In this paper, we focus on a different type of light client protocol: the BFT-based
light client protocol. In a BFT-based protocol, a committee of validators regularly
maintains a chain of checkpoints. Each checkpoint, denoted as cp, includes infor-
mation such as transaction data (typically represented as a Merkle tree root) and
public keys (with weights) of the next committee. At each round r, the committee
collectively determines the next checkpoint, denoted as cpr. For a proposed check-
point to be valid, it must receive signatures from a supermajority (greater than 2

3
)

of the committee members. The committee is rotated at regular intervals as defined
by the protocol to ensure both security and liveness, which is why the checkpoint
includes information about the next committee.

In such a light client protocol, the light client must verify the validator signatures
on the proposed checkpoints and track committee rotations. To manage this, the
light client typically maintains a state, denoted as Sr, at round r, which tracks the
committee for that round, including the public keys (with weights) of the committee
members. This state is updated using the public key information from the newly
verified checkpoints.

Definition 1 (Security of BFT-Based Light Client Protocol). For this paper, we
are concerned with two properties of the BFT-based light client protocol:

• Security:

– Committee:

∗ The initial committee is set up in a trusted manner.

∗ If, at round r, a supermajority of the committee signs a checkpoint
cpr+1, cpr+1 will be the next checkpoint. This means that 1) cpr+1

points to the most recent valid checkpoint, contains valid transaction
data, and correct public keys (with weights) [BDN18] about the next
committee and 2) cpr+1 will be the only checkpoint signed by the
supermajority of the committee at round r.

– Client: If, with state Sr−1, a light client accepts cpr as a valid next check-
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point, this means that cpr is a checkpoint signed by the supermajority of
the committee at round r − 1.

• Liveness: If an honest full node receives some transaction at some round,
then the supermajority of the committee will approve a checkpoint containing
that transaction [XZC+22].

2.3 Elliptic Curves
An elliptic curve group E(Fq) is a group specified by a set of points P = (x, y)

over a base field Fq and a scalar field Fr, satisfying elliptic curve equations. It
contains a neutral element O (point at infinity) and supports point addition and
scalar multiplication.

2.3.1 Pairing

Some elliptic curve additionally supports a pairing structure, defined as follows.

Definition 2 (Bilinear Pairing). Consider a tuple (p,G1, G2, GT , e, g, h) where p is
a prime number, G1, G2, GT are groups of prime order p, g is the generator for G1

and h is the generator for G2. A pairing is a map e : G1 × G2 → GT that satisfies
the following properties

• Bilinearity: ∀a, b ∈ Fr, P ∈ G1, Q ∈ G2, e(aP, bQ) = e(P,Q)ab = e(abP,Q) =

e(P, abQ)

• Computability: There are efficient algorithms for computing e.

In our work, we consider a particular family of elliptic curves that support pairing
- BLS12 curves.

2.3.2 Cofactor

The cofactor of a subgroup is defined as the ratio between the order of the full elliptic
curve group and that of the subgroup. In traditional elliptic curve cryptography, it
is crucial for the cofactor to be small - ideally one - to mitigate small subgroup
attacks on the discrete logarithm problem. However, for elliptic curve groups that
support pairings, such as those used in pairing-based cryptography, the cofactor can
be substantially larger [Edg15].

To mitigate small subgroup attacks in pairing-friendly elliptic curve groups, cofactor
clearing is required. The straightforward approach involves multiplying a given curve
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point by the cofactor h, thereby eliminating any h-torsion components [Bow19].
However, because the cofactors in these groups are typically large, this naive method
is computationally inefficient. Recent advances have demonstrated that, for certain
families of pairing-friendly curves, cofactor clearing can be performed much more
efficiently using endomorphisms. This optimized approach has been standardized
and is now the recommended method for cofactor clearing [FHSS+23].

2.3.3 Hash to Curve

Definition 3 (Hash to Curve). A hash-to-curve function is a deterministic function
that maps an arbitrary input to a point on E(Fq). Formally, given a cryptographic
hash function h : {0, 1}∗ → {0, 1}k and an elliptic curve E defined over a finite field
Fq, a hash-to-curve function H : F ∗

q → E(Fq) takes an input string m, processes
it through h, and outputs a point P ∈ E(Fq) such that the mapping is one-way,
collision-resistant, and indistinguishable from a uniform random point on E.

The hash-to-curve algorithm proposed in [WB19] is the standard method widely
used for hashing to BLS12 elliptic curves.

2.4 BLS Signature
BLS signature [BLS01] is a digital signature based on bilinear pairing.

Definition 4 (BLS Signature). Consider a tuple (p,G1, G2, GT , e, g, h) that supports
bilinear pairing. BLS signature is a tuple of efficient algorithms (Keygen, Sign,
Verify) that are specified as follows:

• Keygen(λ): Pick sk
$← Fr as the private key and the public key is pk = sk · g ∈

G1.

• Sign(sk,m): sk ·H(m), where H is a cryptographic hash that hashes the mes-
sage to G2.

• Verify(σ,m)→ {0, 1}: Return 1 if e(pk,H(m)) = e(g, σ) else 0.

Note that the above definition assigns public keys to G1 and signatures to G2, but
they can also be assigned in the reverse order.

In addition, BLS Signature can be aggregated. Given public keys {ski ·g}i=1,...,t, one
can compute an aggregate public key pk =

∑t
i=1 ski ·g. To verify a t-multisignature σ

on a message m given aggregate public key pk, the verifier checks whether e(g, σ) =
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e(pk,H(m)) [PSG+24]. If pk is provably the sum of t individual BLS public keys,
we can be assured that t parties signed the message [BDN18].

In this paper, we focus on the scenario where the light client protocol uses the BLS
signature on top of the BLS12 curves. However many techniques developed in this
paper can be applied generally to any other signatures.

2.5 Accumulator Scheme
A cryptographic accumulator [BdM94] is a mechanism that commits to a collection
of values by producing a succinct digest. This digest is binding, meaning it is compu-
tationally infeasible to construct two distinct collections that yield the same digest.
Additionally, many accumulators support succinct membership proofs, allowing ef-
ficient verification that a specific value is included in the committed set.

Definition 5 (Merkle Tree). A Merkle tree [Mer88] is a vector accumulator. Given
a vector v of size 2k and a collision-resistant hash function H, we construct a full
binary tree with 2k leaves, where each leaf corresponds to an element of the vector.
The value vn of each node n in the tree is computed as follows:

1. If n is a leaf node, then vn = H(v[i]), where i is the index of the vector element
corresponding to leaf n.

2. If n is an internal node with left child L and right child R, then vn = H(vL||vR).

The digest d of the Merkle tree accumulator is defined as the value of the root node.

The Merkle tree supports the following operations (where how the auxiliary states
stored in the prover changes are not shown)

• Prove(i) → {n1, n2, . . . , nk}: Generates a Merkle membership proof for the
value vi. The proof includes the sibling values of all nodes along the path from
the i-th leaf to the root.

• Verify(d, vi, {n1, n2, . . . , nk}) → {0, 1}: Verifies whether a value vi belongs to
the Merkle tree with root digest d. This is done by reconstructing the path to
the root using the provided sibling hashes and checking if the recomputed root
equals d. Verification requires O(k) time.

• Update(i, v)→ d: Compute the hash h = H(v), and recompute all hashes along
the path from the updated leaf i to the root to produce the new digest d.

• UpdateH(i, h) → d: Similar to Update, but instead of computing the hash
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internally, the caller provides the precomputed hash h of some value v. The
function directly updates the hash stored at leaf i with h and recomputes the
hashes along the path to the root.

2.6 Succinct Non-Interactive Arguments of Knowl-
edge (SNARK)

Definition 6 (SNARK). For a binary relation R, A SNARK is a triple of PPT
algorithms Π = (Setup,Prove,Verify):

• Setup(1λ, R)→ (pk, vk): On input security parameter λ and the binary relation
R, it outputs a common reference string consisting of the prover key and the
verifier key (pk, vk).

• Prove(pk, x, w) → π: On prover key pk, public input x and the witness w, it
outputs a proof π.

• Verify(vk, x, π)→ {0, 1}: On verifier key vk, public input x, and a proof π, it
outputs either 1 indicating (x,w) ∈ R or 0 when (x,w) /∈ R.

The SNARK must satisfy completeness, knowledge soundness, non-interactivity, and
succinctness. In some cases, it also provides zero knowledge, in which case it is
referred to as a zk-SNARK. We refer readers to Appendix A for formal definitions.

2.6.1 R1CS

To utilize the SNARK for proving and verifying the binary relation R, we oftentimes
encode the relation as an arithmetic circuit. An arithmetic circuit over a field F is
a directed acyclic graph (DAG) where each vertex represents either a variable, a
constant from F , or an arithmetic operation (addition or multiplication) over F .
The edges represent the flow of values between vertices, with each edge carrying an
element of F .

x1

x2

+ × y

Figure 2.1: An example arithmetic circuit representing (x1 + x2) · x1
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Definition 7 (Rank-1 Constraint System (R1CS)). R1CS is a common format
for representing arithmetic circuits. Formally, an R1CS over F with n variables
(including inputs, witness variables, and outputs) and m constraints is defined by a
tuple (A,B,C), where:

• A,B,C are m× n matrices with entries in F

• The variables are represented by a vector z = (z1, . . . , zn) ∈ F n, where z1 = 1

is constant, z2, . . . , zk are public inputs and zk+1, . . . , zn are witness values.

A vector z satisfies the R1CS if the following rank-1 quadratic equation holds:

(Az) · (Bz) = Cz

Relation between the arithmetic circuit and the R1CS. The R1CS repre-
sentation allows us to encode the behaviour of an arithmetic circuit as a set of
algebraic constraints. Each constraint ensures that a particular computation (such
as an addition or multiplication) between variables is performed correctly. These
variables include both public inputs and witnesses - the private intermediate values
and auxiliary inputs known only to the prover.

For example, consider the statement: “I know some x such that d = sha256(x).” In
this case, the witness includes the value x along with the intermediate computation
traces produced during the evaluation of the hash function within the arithmetic
circuit. Proving this statement (i.e., the correct evaluation of a sha256 circuit) is
equivalent to proving that the given public input (e.g., d) and the hidden witness
(e.g., x and intermediate values) satisfy all the constraints that encode the sha256
computation - ensuring that each intermediate step is correctly executed following
sha256 algorithms and that the final output matches d.

Therefore, as long as the verifier is convinced that the R1CS constraints accurately
represent the intended arithmetic circuit and the resulting proof is valid, it can
be confident that the relation, represented by the arithmetic circuit, is satisfied -
without ever learning the witness itself.

arkworks [ac22] is a library that enables developers to express constraints as gadgets
in Rust. Internally, it generates these constraints in the R1CS format, which can then
be proved and verified with various SNARK implementations available within the
ecosystem. In our work, we utilize arkworks to construct gadgets for proving BLS
signature verification and committee rotation.

12



2.6.2 Recursive SNARK

A recursive SNARK is a SNARK that enables the composition of proofs. It
allows a prover to generate a succinct proof for a statement that incorporates the
verification of other proofs within the same system. Instead of proving (x,w) ∈ R

for some x,w,R, a recursive SNARK prover proves

∃ Π = (Setup,Prove,Verify), s.t.,Verify(vk, x, π) = 1

Recursive SNARKs are particularly valuable in applications such as blockchain,
where they enable the aggregation of state transitions into a single succinct proof,
thereby reducing the prover’s computational burden. For instance, recursive SNARKs
can be employed to prove the evolution of a light client protocol by showing that,
at round r:

• There exists a proof attesting to the validity of the checkpoint at round (r−1),
and

• The aggregated signature on the new checkpoint is a valid signature produced
by a supermajority of the committee from round (r − 1).

2.6.3 Folding

A folding scheme is a technique that reduces multiple instances of the same rela-
tion into a single, compact instance while preserving the validity of the underlying
statements.

Definition 8 (Folding scheme). (Adapted Definition from [NDC+24]) A folding
scheme for a relation R is a tuple of PPT algorithms (Setup, Prove, Verify):

• Setup(1λ, R) → (fpk, fvk): Given input security parameter and the relation
R, it outputs a proving key fpk and a verifying key fvk.

• Prove(fpk, [(xi, wi)]
k
i=1) → (x,w, π): Given a proving key, and k instance-

witness pairs claimed to be in R, it outputs a folded instance-witness pair
(x,w) along with a folding proof π.

• Verify(fvk, [xi]
k
i=1, x, π) → {0, 1}: Given a verifying key, public input for k

instances, a folded instance x, and a folding proof π, it verifies whether x is a
folded instance of [xi]

k
i=1 and outputs accept or reject.

It should satisfy the following properties:
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• Completeness: If all initial instance-witness pairs are in the relation, [(xi, wi) ∈
R]ki=1, then it holds that the folding verifier will accept and the folded instance-
witness pair also belongs to R, (x,w) ∈ R.

• Knowledge soundness: If an adversary A produces folded instances (xi)
k
i = 1,

(x,w) and folding proof π that are accepted by the verifier, and (x,w) ∈ R

then it must be the case that (except with negligible probability), an extractor
can find witnesses [wi]

k
i=1 such that [(xi, wi) ∈ R]ki=1.

2.6.4 Incrementally Verifiable Computation (IVC)

IVC [Val08] enables verifiable computation for repeated function application. Intu-
itively, for a polynomial-time function F , with initial input (state) z0 and witness
values w = {w0, w1, . . . , wi−1}, an IVC scheme allows a prover to produce a proof
πi for the statement

zi = F (F (. . . F (z0, w0), w1) . . . , wi−1)︸ ︷︷ ︸
i

= F (i)(z0,w)

In other words, it proves that zi is the result of applying the function F iteratively
i times to the initial value z0, using the witness values w.

Definition 9 (IVC). (Adapted Definition 5 from [KST22]) An IVC scheme for a
polynomial-time function F is a tuple of PPT algorithms (Setup, Keygen, Prove,
Verify):

• Setup(1λ)→ pp: Given input security parameter, it outputs public parameters.

• Keygen(pp, F )→ (pk, vk): Given input public parameters and the function F ,
it deterministic outputs a proving key pk and a verifying key vk.

• Prove(pk, (i, z0, zi), wi,Πi) → Πi+1: Given the proving key pk, public inputs
(i, z0, zi), witness wi, and proof Πi of zi = F (i)(z0,w) for some w, it outputs
a new proof Πi+1.

• Verify(vk, (i, z0, zi),Πi) → {0, 1}: Given the verifying key vk, public inputs
(i, z0, zi) and the IVC proof Πi, it outputs 1 indicating zi = F (i)(z0,w) for
some witness values w and 0 otherwise.

Likewise, it needs to satisfy completeness and knowledge soundness.
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• Completeness: ∀λ ∈ N , for any PPT adversary A:

Pr


Verify(vk, (i, z0, zi),Πi) = 1 :

pp← Setup(1λ),

F,

(
i, z0, zi, zi−1,

wi−1,Πi−1

)
← A(pp)

pk, vk← Keygen(pp, F ),

zi = F (zi−1, wi−1),

Verify(vk, (i, z0, zi−1),Πi−1) = 1,

Πi ← Prove
(
pk, (i, z0, zi−1),

wi−1,Πi−1

)


= 1

where F is a polynomial time computable function.

• Knowledge Soundness: ∀λ ∈ N,n ∈ N , and any expected polynomial time
adversaries A, there exists an expected polynomial time extractor E such that

Pr
r

 zi+1 ← F (zi, wi)

∀i ∈ [0, n− 1]
:

pp← Setup(1λ)
(F, (z0, z),Π)← A(pp, r)

{w0, . . . , wn−1} ← E(pp, r)

 ≈

Pr
r

Verify(vk, (n, z0, z),Π) = 1 :

pp← Setup(1λ)
(F, (z0, z),Π)← A(pp, r)

(pk, vk)← Keygen(pp, F )


where r denotes an arbitrarily long random tape.

Nova [KST22] proposes how to use a folding scheme to construct an IVC scheme.

2.6.5 Folding-based SNARK for IVC

A folding-based SNARK is a SNARK that utilizes the IVC (folding) scheme to
prove facts about a polynomial-time function F . Intuitively, it runs the IVC scheme
to fold (prove) each step of the function F and compresses the final IVC proof π
with a conventional SNARK.

Definition 10 (Folding-based SNARK). A folding-based SNARK for a polynomial-
time function F is a tuple of PPT algorithms (Setup, Prove, Verify):

• Setup(1λ, F ) → (pk, vk): Given input security parameter and the function F ,

15



it outputs a proving key pk and a verifying key vk, in which

spk, svk ← SNARK.Setup(1λ, R)

pp← IVC.Setup(1λ)
ipk, ivk ← IVC.Keygen(pp, F )

pk ← (spk, ipk)

vk ← (svk, ivk)

where R is a relation that checks there exists IVC proofs to verify state tran-
sitions.

• Prove(pk, (k, z0, zk), [(zi, wi)]
k
i=1) → π: Given the proving key, public inputs

(k, z0, zk) and k input-witness pairs for F as witnesses, it outputs a proof π.
The proof π is generated by using IVC.Prove and SNARK.Prove internally,
and it contains a SNARK proof and some commitments about the (relaxed)
R1CS instantiation of the function F we are proving.

• Verify(vk, (k, z0, zk), π)→ {0, 1}: Given a verifying key, public input (k, z0, zk),
and a proof π, it verifies whether zk is a state after applying F iteratively k

times.

As a SNARK, the folding-based SNARK also satisfies the standard properties of
completeness and knowledge soundness. Intuitively, this follows from the correspond-
ing guarantees provided by both traditional SNARKs and IVC. For details on the
construction and formal proofs of these properties in the context of folding-based
SNARKs, we refer readers to [KST22].

It is important to note that the IVC proving (folding) process is significantly faster
than the final SNARK compression (Section 1.3 of [KST22]). This performance
asymmetry suggests that the compression proof should be generated only when
necessary, allowing for more efficient use of computational resources.

sonobe [pse23] is a library that implements a wide range of folding schemes to
support the folding of arithmetic circuits in an IVC style, within the arkworks
ecosystem. It allows developers to define circuits using arkworks and generate
folding-based SNARK proofs from them. In our work, we utilize sonobe to con-
struct SNARKs for verifying committee rotation.
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Chapter 3

Related Work

We now overview existing cryptographic techniques that people use to try to speed
up light client protocols and blockchain. For a more broad range of techniques that
people apply to speed up light client protocol, we refer readers to Section 3 of
[AKMW24].

zkEVM. zk-SNARKs have gained significant traction for enabling compact, veri-
fiable proofs of complex computations. In the context of zkEVM [LLM+24], they
are used to prove the correctness of Ethereum Virtual Machine (EVM) transaction
execution. zkEVM generates a cryptographic proof that validates state transitions
resulting from EVM computations, without revealing underlying data. This is done
by constructing a circuit that models the EVM’s execution logic - including arith-
metic operations, memory handling, and stack manipulations - which is then proven
using a zk-SNARK system. The resulting proof is verified on-chain, offloading com-
putation from validators and enhancing scalability. However, zkEVM is primarily
concerned with proving transaction execution correctness and does not address light
client synchronization. As such, it is orthogonal to our goal of optimizing light client
protocols. Other related approaches, such as assembly-based ZK-VMs like Cairo
and RISC0 [CRTA+24], share similar limitations and are likewise orthogonal to our
focus.

zkBridge. The zkBridge protocol [XZC+22] leverages zk-SNARKs to enable secure
and efficient cross-chain communication. Specifically, zkBridge generates zk-SNARK
proofs of a source chain’s state transitions - modelled using a light client protocol -
which are then verified on a target chain, enabling trustless interoperability across
blockchains. However, zkBridge is designed for cross-chain scenarios, where veri-
fication occurs on a different chain, whereas our work focuses on a single-chain
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setting, where verification is performed off-chain by the light client. Additionally,
the SNARK construction used in zkBridge to incrementally prove the correctness
of state evolution relies on a naive recursive zk-SNARK, which has limitations: it
can only process one transition at a time, or a small batch - where the latter incurs
higher proving overhead and increased latency. These limitations underscore the
need for alternative proof techniques better suited to efficient light client protocols
in our context.

Mina. Unlike previous approaches, Mina [BMRS20a] adopts a fundamentally differ-
ent strategy by building a blockchain entirely around SNARKs, ensuring that both
consensus and transaction execution are cryptographically verifiable. This design
enables light clients to achieve the same security guarantees as full nodes, as the
entire blockchain state can be verified in constant time - approximately 200 ms with
a proof size of just 864 bytes. This makes Mina particularly suitable for resource-
constrained devices. The protocol leverages recursive SNARKs to construct a binary
tree of proofs that efficiently compresses state transitions, attesting to the validity
of the entire chain up to the latest block. Notably, the proof generation cost scales
only with the number of new transactions since the last block, rather than the full
chain history.

However, Mina’s approach is not directly applicable to our setting due to key differ-
ences in goals and constraints. Our objective is to develop a generalized and flexible
protocol for light clients that can operate across a broader range of blockchains, par-
ticularly those that already use checkpoints. Mina, by contrast, is purpose-built from
the ground up to integrate SNARKs into every layer of its architecture. This tight
integration allows Mina to maintain a constant-sized summary of the blockchain, but
it does not address the central challenge we tackle: retrofitting a proof mechanism
onto an existing chain with a potentially large number of historical checkpoints. In
our case, each prior checkpoint must be equipped with a verifiable proof of validity,
requiring an efficient way to bootstrap and scale the proof generation process.

Plumo. Aligned with our overarching goal, Plumo [VGS+22] aims to enhance light
client protocols with cryptographic proofs, enabling resource-constrained devices,
such as low-end mobile phones, to securely sync with the latest blockchain state
without relying on centralized intermediaries. Its design relies on a simplifying as-
sumption (SA) that a supermajority of validators in each epoch remain honest.
Unlike our approach, Plumo does not aim to generate a compact proof for every
checkpoint in the chain. Instead, it focuses on blockchain state summaries, where
the proof size grows sublinearly by concatenating proofs of prior summaries to vali-
date the current one.

18



Plumo achieves efficiency through two SNARK-friendly cryptographic constructions:
a BLS-based offline aggregate multisignature scheme (BBSGLRY), and a composite
hash function (BHP-BLAKE2s). BBSGLRY aggregates epoch-level multisignatures
into a single signature, significantly reducing verification constraints compared to
verifying individual signatures. Notably, it improves upon prior schemes such as
AMSP-PoP by removing the requirement for signers to know the aggregate public
key ahead of time. The BHP-BLAKE2s hash function merges the algebraic collision-
resistant Bowe-Hopwood-Pedersen hash with the symmetric BLAKE2s hash, balanc-
ing SNARK efficiency (i.e., fewer multiplication gates) with strong security guaran-
tees. To circumvent the inefficiencies of non-native arithmetic in SNARK circuits,
Plumo adopts a two-chain pairing curve design: BLS12-377 for consensus and BW6-
761 for proof generation and verification.

Despite its innovations, Plumo’s design is not directly applicable to our setting. Its
focus on producing succinct summaries results in proofs that grow - albeit sublin-
early - over time, which makes it unsuitable for use cases like ours that require
a compact proof per checkpoint. This growth can become burdensome in chains
with frequent checkpoints. Additionally, Plumo optimizes specifically for signatures
based on BLS12-377, which limits its generalizability to blockchains that use differ-
ent elliptic curves. Nevertheless, some of Plumo’s techniques - especially its use of
aggregate multisignatures - could be adapted in our context to reduce verification
costs by aggregating signatures across multiple checkpoints into a single proof.

Transitive Signatures. In contrast to prior approaches that rely on SNARKs,
[AKMW24] proposes a novel light client design for permissionless blockchains that
avoids the computational overhead associated with zero-knowledge proofs. The au-
thors build their protocol on two empirical observations: (i) most light clients syn-
chronize missed states within a short window - typically under two hours - and
(ii) in many committee-based permissionless blockchains, large subsets of valida-
tors remain unchanged across epochs, with validator turnover often below 7% per
epoch. By leveraging these patterns, the protocol significantly reduces verification
complexity using transitive signatures. Instead of performing traditional sequential
verification, which requires O(m) time to verify m block headers, this method enables
constant-time (O(1)) verification in the common case of a stable validator quorum.
However, the protocol’s efficiency hinges on validator set stability, making it less
suitable for blockchains with frequent validator churn - such as Ethereum - where
new committees are sampled regularly. This limits the generality and applicability
of their approach in more dynamic environments.
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Chapter 4

Design

In this chapter, we present our protocol for verifying committee rotations in a light
client setting. We begin by outlining the abstract model of the light client protocol
that forms the basis of our approach. We then describe the full protocol and argue
its security properties. Finally, we introduce the Levelled Merkle Forest, a data
structure designed to optimize protocol performance.

4.1 Abstraction of the Light Client Protocol
Before delving into the details of our protocol, we provide an architectural abstrac-
tion of the light client model on which our protocol is built.

......epoch
prev_hash
signature

txn
committee

Checkpoint 0
epoch

prev_hash
signature

txn
committee

Checkpoint 1
epoch

prev_hash
signature

txn
committee

Checkpoint N

Figure 4.1: An abstraction of the chain of checkpoints in the light client
protocol.

In this model, prover nodes (e.g., full nodes) maintain a chain C of checkpoints as
shown in 4.1. Each checkpoint includes:

• An aggregated signature, accompanied by a map indicating which committee
members from the previous checkpoint contributed to the aggregation;

• A cryptographic hash of the previous checkpoint;
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• Transaction metadata; and

• The public keys of the next committee and their corresponding weights.

In this chain, the N -th checkpoint is signed by a supermajority of the committee from
the (N−1)-th checkpoint. By signing the new checkpoint, the supermajority attests
to its validity, thereby upholding the security property defined in Definition 1. The
light client verifies the signature and checks that the sum of the weights associated
with the aggregated public keys exceeds a strong quorum threshold. It is assumed
that the committee at the genesis checkpoint (checkpoint 0) is trusted by all light
clients. This trust stems from the security guarantees of the underlying blockchain
protocol responsible for selecting the initial committee.

To access any transaction data it wants, the client requests the relevant information
from the prover nodes, which provides proof to the client about the validity of the
data it gives to the light client that the light client can verify based on the algorithm
shown in Protocol 1.

Protocol 1 (Naive Light Client Protocol). The naive light client protocol for a chain
C with genesis checkpoint cp0 is a tuple of algorithms (Setup, Request, Verify):

• Setup(1λ, C)→ gen: Given the input security parameter and checkpoint chain
C, the setup algorithm returns the genesis checkpoint gen = cp0.

• Request(i) → (cpi, (cp0, cp1, . . . , cpi−1)): The light client requests cpi. The
prover nodes provide cpi with proof about the inclusion of cpi in the chain
of checkpoints. The proof is simply a vector of checkpoints from the genesis
checkpoint to the one before the light client requests.

• Verify(gen, cpi, (cp0, cp1, . . . , cpi−1))→ {0, 1}: The light client verifies the proof
by ensuring the genesis checkpoint is the one it trusts (checking gen = cp0)
and verify the committee rotation in the proof one by one (the supermajority
of the committee in cpk signs cpk+1 for k ∈ [0, i − 1]). It outputs 1 if all the
aforementioned verification is successful.

However, this naive light client protocol is not efficient as the size of the proof scales
with the index of the checkpoint the light client requests. To address this problem,
we propose the following protocol based on folding-based SNARK.
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4.2 Protocol detail
Protocol 2 (Light Client Protocol with folding-based SNARK). The light client
protocol with folding-based SNARK for a chain C with genesis checkpoint cp0 is a
tuple of algorithms (Setup, Request, Verify):

• Setup(1λ, C) → (gen, pk, vk): Given the input security parameter and the
checkpoint chain C, the setup algorithm outputs the genesis checkpoint gen =

cp0 and the result of FoldingSNARK.Setup(1λ, F ), where F verifies the com-
mittee rotation of C. The function F is discussed in more detail in Section 4.2.2.

• Request(pk, i) → (cpi, π): Given the proving key pk and the light client’s
request for ith checkpoint, the prover nodes provides cpi with a proof.

• Verify(vk, gen, cpi, π)→ {0, 1}: The light client verifies the proof by ensuring
FoldingSNARK.Verify(vk, (i, gen, cpi), π) = 1.

To implement this protocol, a crucial aspect is to model the function F . In the
following sections, we present the core component for verifying committee rotation
- the BLS verification circuit - and introduce the interface and implementation of
the folding circuit FOLD, which is the concrete realization of the function F .

4.2.1 BLS Verification Circuit

Circuit BLS
Public input: cpi, apk, sig;
Computation:;
(1) Check BLS.Verify(sig, cpi) = 1;
(1.1) Compute the hash h = H(cpi), where H is a
collision-resistant hash mapping cpi to the bilinear group G2,
implemented in R1CS;
(1.2) Verify the pairing equation e(apk, h) = e(g, sig), where g is
the generator of the bilinear group G1.

Figure 4.2: BLS verification circuit.

Figure 4.2 illustrates the BLS verification circuit. It takes in input checkpoint cpi,
aggregated public key apk, and a signature sig. It consists of two main steps: hashing
the checkpoint to an element in the group G2 and verifying a pairing equation. Since
we employ BLS signatures over a BLS curve, we instantiate the hash function H
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according to the construction in [WB19], which provides a deterministic, collision-
resistant hash for mapping byte sequences to elements in G2. This construction
builds upon a base hash function H ′ : {0, 1}∗ → {0, 1}k and involves the following
steps:

• HashToField(bytes)→ elm: Given an input byte sequence, extract sufficient
bits from H ′(bytes) to construct a field element elm in the domain of G2.

• MapToCurve(elm) → P : Map the field element elm to a point P on the
elliptic curve (not necessarily in the correct subgroup).

• CofactorClearing(P )→ P ′: Clear the cofactor of P to obtain a point P ′ in
the correct subgroup of G2.

We discuss the challenges of concretely implementing these steps in the arkworks
ecosystem in Section 5.2.

4.2.2 Folding Circuit

Let’s recall the definition of the function F . It is a function that takes in two inputs
zi, wi, which are the state and witness at ith step respectively and outputs a new
state zi+1.

To model this in R1CS, it’s sufficient to define a circuit that takes in two public
inputs (zi, zi+1) and a witness value wi. We don’t need to compute the state zi+1

in R1CS as the purpose of the R1CS is to verify the state transition rather than
computing it. The computation is usually done out of the circuit.

Based on this interface, we define the folding circuit FOLD as follows:

Circuit FOLD
Public input: (cpi, cpi+1);
Witness: sig;
Computation:;
(1) Aggregate all the pks from cpi that sign sig to apk;
(2) Check the sum of the weight of these pks exceeds the strong
quorum threshold;

(3) Check the aggregated signature sig is a valid elliptic curve
group element and is in the correct subgroup;

(4) Run BLS((cpi+1, apk, sig), );

Figure 4.3: Folding circuit for proving committee rotation.
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This circuit ensures that the aggregated public key corresponds to a supermajority of
the committee (Step 2) and that the associated signature is verified correctly (Step
4). Additionally, it performs the necessary checks to confirm that the aggregated
signature is a valid element of the elliptic curve group and lies within the correct
subgroup (Step 3), thereby mitigating the risk of small subgroup attacks. These
checks are essential, particularly because in the folding circuit FOLD, the signature
sig is provided as a witness.

4.2.3 Security Proof

In this section, we prove that Protocol 2, with the function F modelled as in Fig-
ure 4.3, satisfies soundness and completeness, which are defined as follows:

Definition 11. The soundness and completeness of the light client protocol (with a
proof system) are defined as follows:

• Soundness: ∀λ ∈ N , any checkpoint chain C, and any PPT adversary A, the
following probability is negligible with respect to λ:

Pr

Verify(vk, gen, cp, π) = 1 :

(gen, pk, vk)← Setup(1λ, C)
(cp, π)← A((gen, pk, vk), C),

cp /∈ C



• Completeness: ∀λ ∈ N , any checkpoint chain C, and any cpi ∈ C

Pr
[
Verify(vk, gen, cpi,Request(pk, i)) : (gen, pk, vk)← Setup(1λ, C)

]
= 1

The completeness of the protocol follows directly from the completeness of the un-
derlying SNARK and IVC schemes. We now focus on proving soundness.

Proof. Suppose an adversary outputs a pair (cp, π) such that Verify(vk, gen, cp, π) =
1. By the knowledge soundness of folding-based SNARKs (which itself follows from
the knowledge soundness of both SNARKs and the IVC scheme), we can extract
a sequence of witness values (cp′1, . . . , cp

′
n−1, cp). Let us denote the corresponding

checkpoint chain as C ′ = (cp′0, cp
′
1, . . . , cp

′
n), where cp′0 = gen and cp′n = cp.

By the definition of the folding circuit in Figure 4.3, this chain C ′ satisfies the
following property:

• For every i ∈ [0, n− 1], the supermajority of the committee at checkpoint cp′i

has signed the subsequent checkpoint cp′i+1.
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Now, consider the canonical chain C = (cp0, . . . , cpn) maintained by the prover nodes,
where cp0 = gen. Without loss of generality, suppose C has the same length as C ′.
Since cp /∈ C, the two chains must differ at some position. Let i be the smallest index
at which C and C ′ diverge.

This implies that the supermajority of the committee at checkpoint cpi−1 = cp′i−1 has
signed two distinct checkpoints: cpi and cp′i. This contradicts the security assumption
stated in Definition 1, which requires that the supermajority of a committee cannot
sign conflicting checkpoints. Hence, soundness is preserved.

4.3 Levelled Merkle Forest

4.3.1 The Bootstrapping Problem

A significant challenge in the above scheme is the need to generate a SNARK proof
for every checkpoint to enable efficient verification by light clients. This requirement
introduces substantial proving overhead, as SNARK compression is considerably
more time-consuming than the folding process itself. As a result, it may take a long
time for prover nodes to produce proofs for all existing checkpoints - particularly
those that predate the deployment of our proving scheme. We refer to this challenge
as the bootstrapping problem.

To alleviate this proving burden, we can trade off some proving efficiency for a
slight increase in verification time for checkpoints that existed before our scheme
was introduced. A straightforward solution is to prove the construction of a Merkle
accumulator within the R1CS circuit, where the hash of each checkpoint is stored
as a leaf in a Merkle tree. The number of leaves, n, is fixed in advance and can be
set to match the number of pre-existing checkpoints.

Under this design, the system produces a SNARK compression proof only once
every n checkpoint. Then, for any specific checkpoint cpi where i ∈ [1, n), the prover
supplies a proof tied to the n-th checkpoint. This proof includes the Merkle root root
and a Merkle path demonstrating that cpi is a valid leaf in the Merkle tree rooted at
root. The light client first verifies the validity of the Merkle root using SNARK and
then verifies cpi using the Merkle root. As a result, the light client’s verification time
increases from O(1) to O(log n). The corresponding prove and verify algorithms are
summarized in Protocol 3.

Protocol 3 (Light Client Protocol with folding-based SNARK + Merkle Root).
The light client protocol with folding-based SNARK + Merkle Root for a chain C
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with genesis checkpoint cp0 is a tuple of algorithms (Request, Verify):

• Setup(1λ, C) → (gen, pk, vk): Given the input security parameter and the
checkpoint chain C, the setup algorithm outputs the genesis states gen =

(cp0, root0), where root0 is the Merkle digest of accumulating a vector of zero
hashes, and the result of FoldingSNARK.Setup(1λ, F ).

• Request(pk, i)→ (cpi, (cpn, rootn, path, π)): Given the proving key pk and the
light client’s request for ith checkpoint, the prover nodes provides cpi with a
proof. The proof contains cpn (the nth checkpoint), rootn (the Merkle root at
the nth step), a folding-based SNARK proof π and a Merkle path path.

• Verify(vk, gen, cpi, (cpn, rootn, π)) → {0, 1}: The light client verifies the proof
by ensuring FoldingSNARK.Verify(vk, (n, gen, (cpn, rootn)), π) = 1 and
Merkle.Verify(rootn, cpi, path) = 1.

Security. The security of Protocol 3 follows from the security of Protocol 2 and the
security (binding) of the Merkle accumulator under the assumption that the hash
function used is collision-resistant.

We implement this idea by augmenting the circuit described in Figure 4.3, as shown
below:

Circuit FOLDMnaive

Public input: ((cpi, rooti), (cpi+1, rooti+1));
Witness: (sig, pathi);
Computation:;
(1) Run FOLD((cpi, cpi+1), sig);
(2) Check Merkle.Verify(rooti, 0, pathi) = 1;
(3) Check Merkle.Verify(rooti+1, H(cpi), pathi) = 1;

Figure 4.4: Folding circuit with Merkle root for proving committee rota-
tion.

To support the Merkle accumulator, we augment the circuit with two Merkle roots
as public inputs: one representing the current tree root and the other representing
the updated root after inserting the hash of a new checkpoint. To verify correct
insertion, the circuit ensures that the insertion position initially contained an empty
value (Step 2) and that replacing it with the checkpoint’s hash produces the new root
(Step 3). These checks require a Merkle path witness of size O(log n) and O(log n)

hash computations.
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However, a key limitation of the naive Merkle accumulator is that it treats all past
checkpoints equally. In practice, as observed in [AKMW24], light clients most fre-
quently synchronize with the most recent checkpoint. Motivated by this observa-
tion, we hypothesize that recent checkpoints are accessed far more often than older
ones. To exploit this skewed access pattern, we introduce a new data structure: the
Levelled Merkle Forest (LMF). This structure yields variable-length proofs -
offering shorter proofs when the queried checkpoint index i is close to n - while still
maintaining a worst-case proof size of O(log n).

4.3.2 Construction

......

Figure 4.5: The Levelled Merkle Forest.

Figure 4.5 illustrates the structure of the Levelled Merkle Forest (LMF). The for-
est consists of k complete Merkle trees, M1,M2, . . . ,Mk, each assigned to a distinct
level L1, L2, . . . , Lk, and each containing the same number of nodes, q. A defining
structural property of the LMF is that the root of the Merkle tree at level Li be-
comes a leaf node in the Merkle tree at the next higher level, Li+1. As a result, only
the leaves of the first-level tree, M1, directly store hashes of external data.

Figure 4.6 describes the off-circuit algorithms to operate on the LMF.

The main idea of the Construct-Naive algorithm is to incrementally update the
state s while ensuring that all previously constructed Merkle trees remain accessible
for indexing in the future. This is achieved by storing them in a map, with careful
attention to how indexing is managed. A key observation is that each Merkle tree in
the Levelled Merkle Forest (LMF) is a complete binary tree, and the LMF is built
hierarchically. As a result, different Merkle trees in the forest use different segments
of the bit representation of the index in the vector v.

For example, the lowest ⌊log2 q⌋ bits (from the least significant bit) can be used
to index into M1, while the remaining higher-order bits are used as a key in m1

to identify and store this specific instance of M1. Also, as can be seen from the
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Parameters Descriptions:
• H: A collision-resistant hash function with a desired security level.
• n: The number of nodes that can be stored in the LMF.
• q: The number of nodes in each tree.
• k: The number of trees in LMF.
• s: The LMF as shown above in Figure 4.5. s = (M1, . . . ,Mk).
• m: A vector of k maps (one for each level) from index to Merkle tree.
• d: The digest of the LMF tree.
• v: The input vector of length n.

Construct-Naive(v) → s,m, d:
• Initialize an empty LMF state s and an empty map m.
• From i = 0 to n (exclusive),

– h = H(vi)
– idx = i
– From j = 1 to k

∗ idxj = lower ⌊log2 q⌋ bits of idx.
∗ Mj.UpdateH(idxj, h).
∗ Right shift idx by ⌊log2 q⌋ bits.
∗ Store Mj to mj with idx as key.
∗ h = root of Mj.

• Return s,m, d = root of Mk.

Construct-Fast(v) → s,m, d:
• Initialize an empty map m.
• From i = 1 to k,

– If i = 1, mi = trees in Li init using v;
– Else, mi = trees in Li init using the digest of trees in Li−1.

• s = vector of last trees constructed in each level.
• Return s,m, d = root of Mk.

Prove(s,m, i) → path:
• path = an empty vector
• From j = 1 to k

– idxj = lower ⌊log2 q⌋ bits of i.
– Right shift i by ⌊log2 q⌋ bits.
– M = the Merkle tree stored at key i in mj.
– proof = M.Prove(idxj, h), and add proof to path.

• Return path.

Verify(d, vi,path) → {0, 1}: Follows the standard Merkle tree verification
process: first, compute the hash of vi; then, iteratively hash it with the
sibling values in path to reconstruct the root d′; finally, return if d = d′.

Figure 4.6: The off-circuit algorithm for Levelled Merkle Forest.
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Construct-Naive algorithm, the LMF can be built incrementally - by inserting
elements one at a time.

However, this naive approach is not ideal, as it incurs a time complexity of
O(Nk log q): there are N values in the vector, and each value must update k Merkle
trees (each of size q). To improve this, we can leverage the same idea used in con-
structing traditional Merkle trees and binary heaps. Specifically, we first construct
all the trees at level L1 and store them in a map. Using these, we can efficiently
construct the trees at level L2, and so on. This strategy ensures that each node in all
the Merkle trees is assigned a value only once, leading to a reduced time complexity.
We refer to this optimized method as the Construct-Fast function.

The Prove algorithm uses a similar strategy for index manipulation. It splits the
index i into two parts: the lower-order bits determine the position of the element
within a specific Merkle tree and are used to call the Merkle tree’s Prove API, while
the higher-order bits are used to look up the correct Merkle tree from the map. The
final LMF proof is a concatenation of k individual Merkle proofs, which together
allow reconstruction of the overall digest of the LMF.

Unlike the off-circuit algorithm, the on-circuit algorithm differs in that it does not
need to maintain a map. Instead, it is only responsible for verifying that the state
transitions of the LMF are valid. This is achieved by executing a modified version
of the Construct-Naive algorithm within the circuit, which verifies the LMF state
step-by-step. This incremental verification is made possible by the folding-based
SNARK, which ensures the correctness of the entire construction process. The cor-
responding circuit is illustrated in Figure 4.7.
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Circuit LMF
Public input: (si, si+1);
Witness: (index, hash);
Computation:;
(1) Check index = i;
(2) h = hash

From j = 1 to k

• idx = lower ⌊log2 q⌋ bits of index.
• Mj.UpdateH(idx, hash).

– Rehash all the states with the new hash h to compute the
new root.

• Right shift index by ⌊log2 q⌋ bits.
• Update h = root of Mj.

Figure 4.7: R1CS circuit to verify the LMF construction (one step).

In the R1CS setting, the Merkle.UpdateH function must be adapted because the
index is a witness value, which means its value is not known at circuit synthesis
time. As a result, the circuit cannot perform selective updates based on the index.
The only viable solution is to recompute all the hashes to derive the Merkle root
from scratch. This implies that the cost of verifying a state change within the R1CS
scales linearly with the size of the state input si embedded in the circuit.

Batch Update. As evident from the design of the LMF circuit, the entire state
must be rehashed for each update. This observation naturally motivates the idea of
batching multiple updates within the circuit. Unlike traditional Merkle accumulators
- where batching updates entail applying each update sequentially and thus incur the
number of constraints proportional to the batch size - the LMF circuit rehashes the
entire state regardless of the number of updates. As a result, batching updates can
significantly reduce amortized proving time. Figure 4.8 presents the batch update
circuit for LMF.

30



Circuit LMF batch

Public input: (si, si+q) where i is a multiple of q;
Witness: (index, {hash1, . . . , hashq});
Computation:;
(1) Check index = i;
(2) M1.UpdateH(index, {hash1, . . . , hashq})

• Recompute the digest for M1 by using {hash1, . . . , hashq} as
leaves.

h = root of M1.
From j = 2 to k

• Right shift index by ⌊log2 q⌋ bits.
• idx = lower ⌊log2 q⌋ bits of index.
• Mj.UpdateH(idx, hash)

• Update h = root of Mj.

Figure 4.8: R1CS circuit to verify the LMF construction (batched).

4.3.3 On-Circuit and Off-Circuit Cost Analysis

In this section, we examine the parameterization of the LMF to identify optimal
values for specific objectives.

Consider a vector of length N that we wish to commit to, and suppose each Merkle
tree has q nodes. We observe the following:

• The number of level-L1 trees required is N
q+1
2

= 2N
q+1

< 2N
q

.

• Similarly, the number of level-L2 trees is N

( q+1
2 )

2 = 4N
(q+1)2

< 4N
q2

.

This suggests that the number of Merkle trees required at level k can be upper-
bounded by:

2kN

qk
.

To determine the maximum number of levels k necessary for the LMF to store N

values, we solve:
2kN

qk
= 1 ⇒ k =

logN

log q
2

.

Given the practical use cases of LMF, we now consider two key objectives for opti-
mization:
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• Total On-Circuit State Size: The circuit must maintain k Merkle trees,
each with q nodes, resulting in a total state size of:

kq =
logN

log q
2

· q.

This metric is critical because it directly impacts the number of constraints
generated in the R1CS representation, and hence the performance of the un-
derlying SNARK.

– Number of Constraints: Since verifying an LMF update on-circuit
involves recomputing all hashes, the constraint count grows linearly with
the number of states, i.e., O(N).

– SNARK Performance: While performance depends on the specific
proving system - some like HyperPlonk have linear complexity [CBBZ23],
while others like Groth16 is quasi-linear [Gro16] - in both cases, per-
formance correlates closely with the number of constraints. Therefore,
minimizing on-circuit state size is an important design goal.

• Proof Size: Based on Figure 4.6, the proof size is given by:

k log q =
logN

log q
2

· log q.

This reflects the concatenation of k Merkle proofs, each of length log q, and
thus serves as another key metric.

Since both log q
2

and log q are in O(log q), the proof size remains asymptotically
close to logN , regardless of the specific choice of q. Therefore, we choose to focus
our optimization on minimizing the total on-circuit state size. This corresponds to
minimizing the following function with respect to q:

Minimize logN

log q
2

· q.

Taking the derivative and solving yields the optimal value:

q = 2e.

This suggests that, in theory, setting q close to 2e ≈ 5.44 minimizes the total on-
circuit state size. In practice, since q + 1 must be a power of two to maintain the
complete binary Merkle tree structure, we select the nearest such value, like q = 3

or q = 7, depending on the implementation trade-offs.

32



With the above optimization results, Figure 4.9 summarizes the bounds for all the
operations of LMF.

The number of trees k: logN
log q

2
= O(logN).

Off-Circuit:
• State Size (including the map): As each level l has 2lN

ql
Merkle

trees, we can compute the total state size needed as

q

k∑
i=1

2iN

qi
= qN(

1− (2
q
)k+1

1− 2
q

− 1)

< qN(
q

q − 2
− 1) =

2q

q − 2
N (as q = 2e)

So, the state size needed is O(N).
• Construction Time (Fast): O(N), since the state size is O(N) and

each node in the trees that make up the state is assigned a value
exactly once.

• Proof Size: k log q = O(logN).
• Verification Time: Because the proof is O(logN). verification also

takes O(logN).
On-Circuit:

• State Size: kq = 2e lnN = O(logN).

Figure 4.9: The on-circuit and off-circuit cost of LMF.

4.3.4 Variable Length Proof

At first glance, compared with the traditional Merkle accumulator, the LMF does
not provide benefits - despite increasing the size of the public input from O(1) to
O(logN) - and also introduces additional complexity in constructing the accumula-
tor and generating the proof.

However, for the same reason, the LMF provides a unique benefit when running
in R1CS: it results in a state of O(logN) rather than O(1). One observation about
these states is that, given a value vi, if n−i ≤ q+1

2
(where q+1

2
denotes the number of

leaves in the tree and n is a power of the number of leaves), its hash is stored directly
in M1 of the state. Similarly, if n− i ≤ ( q+1

2
)2, the hash of the M1 that stores vi is

in the M2 of the state. This applies generally: for any vi such that n − i ≤ ( q+1
2
)l,

the hash of its Ml−1 is stored in the Ml in the state. This suggests that, in proving,
we don’t need to provide a full Merkle path, but a path that is enough to reach a
hash that is stored inside the final state.

Based on this observation, Figure 4.10 describes the variable length prove and verify
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algorithm.

Parameters Descriptions:
• H: A collision-resistant hash function with a desired security level.
• n: The number of nodes that can be stored in the LMF.
• q: The number of nodes in each tree.
• k: The number of trees in LMF.
• nl: The number of leaves in each tree.
• s: The LMF shown above in Figure 4.5. s = (M1, . . . ,Mk).
• m: A vector of maps from index to Merkle tree. The vector contains

a map for each level k.
• d: The digest of the LMF tree.

VarProve(s,m, i) → path:
• path = an empty vector.
• n = round n to next power of nl.
• diff = max(n− i− 1, 1)
• l = ⌊lognl diff⌋ + 1
• From j = 1 to l (exclusive)

– idxj = lower ⌊log2 q⌋ bits of idx.
– Right shift idx by ⌊log2 q⌋ bits.
– M = the Merkle tree stored at key idx

in mj.
– proof = M.Prove(idxj, h).
– Add proof to path.



This part is
identical to the
corresponding
part in Prove.

• Return path.

VarVerify(s, vi,path) → {0, 1}:
• diff = max(n− i− 1, 1)
• l = ⌊lognl diff⌋
• Follows the standard Merkle tree verification process: first, compute

the hash of vi; then, iteratively hash it with the sibling values in path
to reconstruct the final digest; finally, return 1 if the reconstructed
digest is in the corresponding leaf of Ml ∈ s, and 0 otherwise.

Figure 4.10: The variable length prove and verify algorithm for Levelled
Merkle Forest.

4.3.5 Light Client Protocol with LMF

With the LMF circuit in and the variable-length algorithms in Figure 4.10, we can
define our final version of the light client protocol as below.

Protocol 4 (Light Client Protocol with folding-based SNARK + LMF). The light
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client protocol with folding-based SNARK + LMF for a chain C with genesis check-
point cp0 is a tuple of algorithms (Request, Verify):

• Setup(1λ, C) → (gen, pk, vk): Given the input security parameter and the
checkpoint chain C, the setup algorithm outputs the genesis states gen =

(cp0, s), where s is the empty LMF state, and the result of
FoldingSNARK.Setup(1λ, F ).

• Request(pk, i)→ (cpi, (cpn, sn,mp, π)): Given the proving key pk and the light
client’s request for ith checkpoint, the prover nodes provides cpi with a proof.
The proof contains cpn (the nth checkpoint), sn (the LMF state at the nth
step), a folding-based SNARK proof π and a variable-length LMF proof mp.

• Verify(vk, gen, cpi, (cpn, sn,mp, π))→ {0, 1}: The light client verifies the proof
by ensuring FoldingSNARK.Verify(vk, (n, gen, (cpn, sn)), π) = 1 and
LMF.VarVerify(sn, cpi, path) = 1.

Security. Similar to Protocol 3, the security of Protocol 4 follows from the secu-
rity of Protocol 2 and the security (binding) of the Merkle accumulator under the
assumption that the hash function used is collision-resistant.
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Chapter 5

Implementation

In this chapter, we describe the overall architecture of our library Mim, which im-
plements our light client protocol. We then delve into specific components of the
implementation, focusing on the implementation of hash to the curve, a fix for a
bug related to emulated field variables in arkworks, and various circuit optimiza-
tions.

5.1 Architecture
Our library consists of 8000+ lines of Rust code and has several modules, described
below:

• bc: Provides an implementation of the abstracted checkpoint chain described
in Figure 4.1. It defines data structures representing signatures, committees,
checkpoints, and the checkpoint chain, along with the necessary methods for
verification and serialization. To facilitate testing, it also includes helper meth-
ods for randomly generating checkpoint chains.

• bls: Implements BLS signatures both on-circuit and off-circuit. It provides a
convenient API, including sign, aggregate_sign, verify, and
aggregate_verify. Both versions are generic over the BLS12 family of curves
(e.g., BLS12-377 or BLS12-381) to facilitate easy switching of curves. Addi-
tionally, the on-circuit implementation is generic over the SNARK field and
the field variable it uses (native or emulated).

• hash: Implements the hash-to-curve [WB19] in R1CS for BLS12 curves.
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• merkle: Implements the LMF data structure and corresponding algorithms,
both on-circuit and off-circuit, as described in the paper.

• folding: Uses sonobe to implement the folding circuit for verifying committee
rotation on the abstracted checkpoint chain. To conform to sonobe’s interface,
it introduces traits for converting between constraint field variables and high-
level objects, as well as for serializing and deserializing these objects to bytes,
which are consistent with the bc module. This module builds on top of bc and
bls.

• tests: Contains tests and debugging notes that uncovered the emulated field
variable bug in arkworks. It also investigates properties of emulated field
variables, motivating the discussion in Section 7.3.

We will now highlight some aspects of hash, bls, and folding and describe how we
uncover and fix the bug in arkworks in the following sections.

5.2 Hash to Curve
In this subsection, we detail how we implement the three parts of hash-to-curve:
hash-to-field, map-to-curve, and cofactor clearing.

5.2.1 Hash to Field

The hash-to-field step consists of two parts: an expander, which expands the input
to a sequence of uniformly random bytes using a cryptographic hash function, and
a hasher, which reconstructs field elements from those bytes.

Expander

To implement the expander, we first define an interface for the hash function. In-
spired by the arkworks and rand crates in Rust, we introduce a PRFGadget trait
that abstracts the behaviour of the hash function. Specifically, the hash function
should support incremental updates and a finalization step that outputs the digest.

pub trait PRFGadget<F: Field> {
type OutputVar: EqGadget<F> + ToBytesGadget<F> + Clone + Debug;

// Output size of the hash function in bytes
const OUTPUT_SIZE: usize;
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fn update(
&mut self, input: &[UInt8<F>]

) -> Result<(), SynthesisError>;

fn finalize(self) -> Result<Self::OutputVar, SynthesisError>;
}

To realize this interface, we modified the existing R1CS implementation of the
Blake2s hash function in ark-crypto-primitives. As the base implementation
was non-incremental - i.e., it only accepted the entire input at once - we studied the
standard Blake2s and implemented an incremental update mechanism that achieves
a 1-to-1 match with the standard Blake2s output across our test suite.

Hasher

With the expander in place, the next step is to implement a hasher. The hasher
requests a sufficient number of uniform bytes from the expander and transforms
them into the target field element (often called a field variable in R1CS). To do this,
we need to know the extension degree m of the field and the size s of a base prime
field element. Using these, we compute the total number of bits needed to construct
a field element as m · s. As for what needs to be hashed, we follow the IRTF RFC
9380 [FHSS+23].

The main challenge lies in reconstructing the base prime field variable from bits and
then building the field variable from its base field representation. Since the arkworks
ecosystem does not provide utilities for these, we implemented our own.

To address the first challenge, we define a trait called FromBitsGadget for prime
field variables. This trait provides a method to construct a prime field variable
from bits. To ensure correctness and soundness, we follow the implementation of
Boolean::le_bits_to_fp and apply a double-and-add algorithm inside R1CS.

pub trait FromBitsGadget<CF: PrimeField>: Sized {
fn from_le_bits(bits: &[Boolean<CF>]) -> Self;

}

Finally, to reconstruct the full field element from base prime field elements, we define
another trait, FromBaseFieldVarGadget. This trait is implemented for various field
variables in arkworks and enables us to construct field elements from an iterator
over their base field components.

pub trait FromBaseFieldVarGadget<CF: PrimeField>: Sized {
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type BasePrimeFieldVar: FromBaseFieldVarGadget<CF>
+ FromBitsGadget<CF>;

fn from_base_field_var(
iter: impl Iterator<Item = Self::BasePrimeFieldVar>,

) -> Result<Self, SynthesisError>;
}

5.2.2 Map to Curve

With the hasher in place, the next step is to map the resulting field element to a
point on the elliptic curve. This process involves two mappings: the simplified SWU
(Shallue-van de Woestijne-Ulas) map, which deterministically maps a field element
to a valid point on an isogenous elliptic curve, and the WB map, which translates
points from this isogenous curve back to the target curve [WB19]. Since the WB
map is essentially an isogeny evaluation - i.e., applying a predefined rational map
via polynomial evaluation - we omit its details and instead focus on the SWU map.

To implement the map-to-curve, we follow the R1CS-based implementation of the
off-circuit arkworks version of the map-to-curve algorithm. A major challenge here
stems from the lack of native support for certain mathematical operations in the
R1CS ecosystem - particularly the square root operation, which is not provided out
of the box.

To address this, we use a well-known trick from circuit design in R1CS [Hou23]:
rather than computing the square root directly (e.g., using the Tonelli-Shanks al-
gorithm), we treat the square root as a witness and enforce its correctness via con-
straints. Specifically, we enforce that the square of the witness, if it exists, equals
the input element.

We also draw from insights in [DHMP23], which explores the soundness pitfalls
of on-circuit square root computation for decaf377. Based on that, we construct
a circuit-safe square root gadget using the Legendre symbol to check whether the
input element is a quadratic residue:

impl<F: PrimeField> SqrtGadget<F, F> for FpVar<F>{
fn sqrt(&self) -> Result<(Boolean<F>, Self), SynthesisError> {

let should_construct_value = self.is_constant();

// adapted for simplicity
// ...
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let legendre = self.legendre_qr()?;

let sqrt_var = Self::new_witness(self.cs(), || {
self.value()

.map(|value| value.sqrt().unwrap_or_else(F::zero))
})?;
let sqrt_square = sqrt_var.square()?;

sqrt_square.conditional_enforce_equal(self, &legendre)?;
sqrt_var.conditional_enforce_equal(

&Self::zero(), &!legendre.clone()
)?;

Ok((legendre, sqrt_var))
}

fn legendre_qr(&self) -> Result<Boolean<F>, SynthesisError> {
self.pow_by_constant(F::MODULUS_MINUS_ONE_DIV_TWO)?.is_one()

}
}

This approach works as follows:

• We first compute the Legendre symbol to determine whether the field element
is a quadratic residue (QR).

• If it is a QR, we enforce that the square of the supplied witness equals the
original element.

• If not, we enforce that the witness is zero.

Since the Legendre symbol is computed soundly in the circuit, this ensures that our
sqrt implementation is also sound.

Another smaller but nontrivial challenge lies in implementing the sgn0 function from
Section 4.1 of RFC 9380, which determines the sign of a field element. The difficulty
arises because arkworks does not expose a method for directly accessing the base
field representation (or sign) of a field variable. To overcome this, we define a custom
trait ToBaseFieldVarGadget, which complements the FromBaseFieldVarGadget
and enables conversion from any field variable to its base prime field representation:

pub trait ToBaseFieldVarGadget<F: PrimeField, CF: PrimeField>: Sized
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{
type BasePrimeFieldVar: ToBaseFieldVarGadget<F, CF>

+ FieldVar<F, CF>;

fn to_base_field_vars(
&self

) -> Result<Vec<Self::BasePrimeFieldVar>, SynthesisError>;
}

With these methods and traits, we implement the full map-to-curve algorithm and
achieve a one-to-one match with the off-circuit arkworks implementation.

5.2.3 Cofactor Clearing

Once we obtain a point on the curve, the final step is to ensure that the point
lies in the correct prime-order subgroup. This is accomplished through cofactor
clearing. There are two standard approaches for this: (1) multiplying the point by
the subgroup cofactor, and (2) applying a curve-specific endomorphism.

In the arkworks implementation of off-circuit hash-to-curve for the BLS12 family of
curves, the endomorphism-based method is used. To ensure consistency with their
implementation, we adopt the same approach in our on-circuit implementation. Since
this method is curve-specific - different BLS12 curves use different endomorphisms -
we defined a new trait called CofactorGadget and implemented it for both BLS12-
377 and BLS12-381.

Below is the definition of the trait:

pub trait CofactorGadget<
FP: FieldVar<Self::BaseField, CF>,
CF: PrimeField

>: CurveGroup
where

for<'a> &'a FP: FieldOpsBounds<
'a,
<Self as CurveGroup>::BaseField, FP

>,
<Self as CurveGroup>::Config: SWCurveConfig,

{
fn clear_cofactor_var(

point: &ProjectiveVar<Self::Config, FP, CF>,
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) -> Result<ProjectiveVar<Self::Config, FP, CF>, SynthesisError>
{

let cofactor_bits: Vec<_> =
<Self::Config as CurveConfig>::COFACTOR
.iter()
.flat_map(|value| {

BigInteger64::from(*value)
.to_bits_le()
.into_iter()
.map(Boolean::constant)

})
.collect();

point.scalar_mul_le_unchecked(cofactor_bits.iter())
}

}

This trait provides a default mechanism for cofactor clearing by performing scalar
multiplication using the cofactor bits, which simplifies future implementations for
curves that do not support an endomorphism-based method.

With this final component in place, our complete hash-to-curve implementation is
finished. It spans roughly 2500 lines of code and is fully reusable for any application
that requires hashing to elliptic curves within the R1CS circuit.

5.3 Emulated Field Variable
In this subsection, we first explain how the widely adopted emulated field method -
originally proposed in xJsnark [KPS18] and used in libraries such as bellman-bignat
[OWWB20] and arkworks - works. We then describe how we encountered, debugged,
and ultimately resolved a bug in arkworks related to this method.

5.3.1 Mechanisms

Limb 
(bits  to )

Limb 
(bits  to )

Limb 
(bits  to )

Figure 5.1: An emulated field variable consists of n limbs, where each
limb initially stores b bits of the target field element.
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Figure 5.1 illustrates the structure of an emulated field variable. In this technique,
a target field element is represented in a different base field by splitting it into a
vector of n limbs l. Each limb stores b bits of the original value. The original target
field element T can be reconstructed using the following formula:

T = l0 + 2b · l1 + · · ·+ 2(n−1)b · ln mod m

where m is the modulus of the target field.

To properly emulate the target field, we want to support common field operations -
such as addition, subtraction, multiplication, bitwise operations, and equality check-
ing - within the emulated structure. Below, we focus on addition, multiplication, and
equality checking, as these directly relate to the bug encountered in arkworks. For
more comprehensive coverage, we refer readers to Section IV of [KPS18].

Addition. Addition is relatively straightforward in most cases. Suppose we have
two emulated field variables, e1 and e2, with corresponding limb vectors l and l′.
The sum of the original target field elements is given by:

T1 + T2 = l0 + 2b · l1 + · · ·+ 2(n−1)b · ln + l′0 + 2b · l′1 + · · ·+ 2(n−1)b · l′n
= (l0 + l′0) + 2b · (l1 + l′1) + · · ·+ 2(n−1)b · (ln + l′n)

From this formula, we observe that each limb may temporarily hold more than
b bits (due to the addition). However, as long as each limb remains within the
safe bit capacity of the base field - thereby preventing overflows during addition -
the above formula correctly computes the sum of the target field elements. If any
limb sum exceeds this capacity, the resulting overflow leads to a permanent loss of
information about the target field element. This highlights a recurring challenge in
emulated field arithmetic: ensuring that limb operations stay within safe bounds to
prevent overflows and maintain correctness. To address this, Section IV.A of xJsnark
introduces a bit width adjustment operation. This operation resets each limb back
to its original bounded form - ensuring that its value remains strictly less than 2b,
as initially intended.

Multiplication. Multiplication differs from addition as it nearly doubles the num-
ber of limbs needed to store the result. Consider the following example with two
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2-limb numbers:

a = l0 + 2b · l1
b = l′0 + 2b · l′1

a · b = (l0 · l′0) + 2b · (l0l′1 + l′0l1) + 22b · (l1l′1)

More generally, for two numbers each with m limbs, their product will have 2m− 1

limbs. A naive approach would compute these limb values using m2 multiplications,
resulting in many unnecessary constraints. Before xJsnark, Karatsuba multiplication
was used to reduce this to mlog2 3 multiplications. xJsnark introduces an optimized
method that instead supplies the product limbs as witnesses and enforces constraints
on them.

To achieve this, we define w as the alleged product limbs and enforce 2m− 1 inde-
pendent linear equations to verify that:

w0 · 10 +w1 · 11 +w2 · 12 = (l0 · 10 + 2b · l1 · 11) · (l′0 · 10 + 2b · l′1 · 11)

w0 · 20 +w1 · 21 +w2 · 22 = (l0 · 20 + 2b · l1 · 21) · (l′0 · 20 + 2b · l′1 · 21)

w0 · 30 +w1 · 31 +w2 · 32 = (l0 · 30 + 2b · l1 · 31) · (l′0 · 30 + 2b · l′1 · 31)

It is evident that the only solution satisfying the above set of equations corresponds
to the correct product limbs. More generally, we enforce:

2m−2∑
i=0

wic
i =

(
m−1∑
i=0

lic
i

)
·

(
m−1∑
i=0

l′ic
i

)
, ∀c ∈ [1, 2m− 1].

Since addition of variables and multiplication by constants are free in R1CS (i.e.,
they do not generate new constraints but merely adjust the matrices of R1CS, as
described in Definition 7), this technique generates only O(m) constraints.

However, the multiplication operation presents a challenge: how can the multipli-
cation result res, which consists of 2m − 1 limbs (denoted as resl), interoperate
with other emulated field variables that have only m limbs? This necessitates an ad-
ditional operation called equality checking. Since the result of multiplication spans
2m − 1 limbs, we must reduce it back to m limbs to maintain compatibility. To
achieve this, we introduce a witness value r, and enforce the relation kp + r = res,
where k is an integer witness represented with m limbs, and p is the modulus of
the target field (supplied as a public constant with m limbs). The product kp is
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computed within the circuit and yields 2m− 1 limbs, while r is a remainder witness
with m limbs such that r < p. The combined value kp+ r thus forms a 2m− 1 limb
vector (denoted as kprl). The final step is to enforce that resl = kprl, which is
handled by the equality checking procedure.

Equality Checking. Checking equality between two values is non-trivial since each
limb does not necessarily contain exactly b bits - a possibility due to prior opera-
tions such as addition, provided no overflow occurs. Consequently, a limb-by-limb
comparison between res and kp + r is insufficient. However, as observed in xJs-
nark, the least significant b bits of the first limb of res and kp+ r must match, and
any excess bits beyond this range can be propagated into the next limb via carries.
This motivates a basic equality checking algorithm: at each limb, enforce that the
first b bits of kprli + carry_in + pad − resli equal zero. Here, pad is included to
prevent underflow in the subtraction in case resli is larger than the sum of the
corresponding components in kprli and the incoming carry.

However, this naive approach is inefficient. If each limb-wise equality check incurs q
constraints, the total cost would be approximately (2m−1)q, since there are 2m−1

limbs. A more efficient strategy again builds upon the observation that in R1CS,
addition of variables and multiplication by constants are free. This allows us to pack
multiple limb equality checks into a single constraint, provided that no overflow
occurs during the packing.

For instance, rather than enforcing equality limb-by-limb, we can instead enforce
that the lower 2b bits of

(kprli + 2b · kprli+1) + carry_in+ pad− (resli + 2b · resli+1)

are zero. More generally, we can pack j limbs together and check that the lower jb

bits of the accumulated difference are zero, as long as overflow is avoided.

This optimization can be implemented efficiently using a clever trick1 to achieve the
same constraint cost as individual limb checks. Therefore, by packing as many limbs
as possible, we can reduce the total number of constraints by a proportional factor.

1As demonstrated in bellman-bignat: https://github.com/alex-ozdemir/
bellman-bignat/blob/b365e01bfd884ed5bea831f146bc74fe333ec786/src/mp/bignat.rs#
L566-L623. The technique leverages a publicly computable value called accumulated_extra,
allowing us to avoid expensive bit decomposition (see Section II.A of [KPS18]). Instead of enforcing
the lower kb bits to be zero, we simply verify that they match a known, precomputed constant.
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5.3.2 Bug and Fix

In this subsection, we describe a bug in the implementation of emulated field vari-
ables in arkworks. Specifically, we review how arkworks implements the emulated
field strategy, how the bug was identified, and how it was ultimately fixed.

In arkworks, the emulated field variable is implemented similarly to the strategy
described earlier. In addition to a vector of limbs, each variable tracks a value called
num_of_additions_over_normal_form. This value helps determine the maximum
possible value that a limb may currently hold. For example, if a limb vector l has
a num_of_additions_over_normal_form value of k, then each limb can hold a
maximum value of up to (k + 1) · 2b, where b is the original bit width allocated to
each limb.

Another commonly used parameter in the codebase is surfeit, which quantifies the
excess number of bits a limb might carry beyond the expected width. It is calculated
as log2(k+1), derived from the maximum value formula above. Since the maximum
possible limb value is (k+1) ·2b, taking the logarithm yields log2(k+1)+b. Here, b is
the intended bit width, and log2(k + 1) represents the bit surplus - i.e., the number
of excessive bits.

These values exist to enable fine-grained control over when to perform reduction. As
discussed in the context of addition, we must ensure that limb-wise addition does
not overflow. This is ensured by checking that the sum of the maximum possible
values across limbs stays below the modulus of the base field.

In arkworks, the num_of_additions_over_normal_form value is updated during
addition as follows:

// modified for simplicity
pub fn add(&self, other: &Self) -> R1CSResult<Self> {

// ...

let mut res = AllocatedEmulatedFpVar {
cs: self.cs(),
limbs: self.limbs + other.limbs,
num_of_additions_over_normal_form: self

.num_of_additions_over_normal_form

.add(&other.num_of_additions_over_normal_form)

.add(&BaseF::one()),
is_in_the_normal_form: false,
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target_phantom: PhantomData,
};

// ...
}

The updated value of num_of_additions_over_normal_form is computed as the
sum of the num_of_additions_over_normal_form values of the two operands, plus
1. This is because the maximum possible value resulting from the addition of two
emulated field variables is:

(self.num_of_additions_over_normal_form+ 1) · 2b+

(other.num_of_additions_over_normal_form+ 1) · 2b

Thus, to maintain correctness, the new num_of_additions_over_normal_form is
set to the sum of the previous two values, plus one.

With this understanding, we can now discuss the bug. The issue arises in a function
called group_and_check_equality, which - as the name suggests - performs the
grouping-based equality check used in multiplication, as previously described. We
discovered that this function was generating unsatisfiable constraints while testing
the BLS verification circuit, which uses emulated field variables for multiplication.

Identifying the root of the bug in this function was non-trivial. To aid debugging, we
modified parts of the arkworks-r1cs-std library (where emulated field variables
are implemented) to emit a stack trace when an unsatisfiable constraint occurred.
With the help of these traces, we were eventually able to isolate the failure to a
specific point where an invalid constraint was generated. It turned out that the
problem originated from the following line:

// this is the formula we showed before, in which
// left_total_limb and right_total_limb represents
// the grouped limbs.
let eqn_left = left_total_limb + pad_limb +

&carry_in - right_total_limb;

// this is the clever trick that we mentioned before to avoid
// checking the lower `jb` bits of the `eqn_left` is 0
// - j is `num_limb_in_this_group`
let eqn_right = &carry
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* BaseF::from(2u64).pow(
&[(shift_per_limb * num_limb_in_this_group) as u64]

)
+ remainder_limb;

// this is where the unsatisfiable constraint was enforced
eqn_left.conditional_enforce_equal(

&eqn_right, &Boolean::<BaseF>::TRUE
)?;

After poking around the code and leaving extensive dbg! logging, we discovered the
root cause of the unsatisfiable constraint: the grouped left limbs (left_total_limb),
when added with the padding value, overflowed. This overflow caused the computed
left-hand side (eqn_left) to differ from the right-hand side (eqn_right), resulting
in an unsatisfiable constraint.

For a while, the reason behind the overflow was unclear - until we noticed that the
grouped left limbs were larger than anticipated. It turns out that the number of
limbs grouped depends on the following piece of code:

// For multiplication
// - bits_per_limb represents 2b
// - shift_per_limb represents b
//
// `arkworks` assumes each limb in the multiplication
// result originally holds 2b bits (see analysis below),
// while `shift_per_limb` is used to compute the shift
// when grouping elements.
let num_limb_in_a_group = (BaseF::MODULUS_BIT_SIZE as usize

- 1
- surfeit
- 1
- 1
- 1
- (bits_per_limb - shift_per_limb))
/ shift_per_limb;

This formula attempts to compute how many limbs can safely be grouped for equality
checking without causing overflow, considering available bits in the base field and
accounting for potential excess bits (surfeit).
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We empirically found that subtracting 1 from the group variable resolves the bug.
However, the underlying question remains: why does this off-by-one error occur
during limb calculations? After extensive investigation of the largely undocumented
codebase, we identified the root cause based on the following observations:

• Grouped Limb Size Invariant. The calculated number of limbs in a group
should satisfy an important invariant while trying to group as many limbs as
possible: the grouped limb must not exceed the padding value. The padding
should be larger than both the left and right grouped limbs to avoid underflow.
It is defined as:

pad_limb_repr <<= (surfeit
+ (bits_per_limb - shift_per_limb)
+ shift_per_limb * num_limb_in_this_group
+ 1
+ 1) as u32;

Plugging in num_limb_in_this_group shows that the padding equals 2m−1,
where m = BaseF::MODULUS_BIT_SIZE.

• Maximum of Each Limb in Emulated Multiplication. For two emulated
field variables l and l′ each with m limbs and
num_of_additions_over_normal_form values n and n′, the result of their
multiplication res is defined as:

resj =
∑j

i=0 li · l
′
j−i for j ≤ m

resj =
∑m

i=j−m li · l′j−i for j > m

Each limb of the result is thus a sum of at most m products. The upper bound
of each product is ((n+1) ·2b) · ((n′+1) ·2b). Therefore, each limb in the result
can be bounded by:

m · ((n+ 1) · 2b) · ((n′ + 1) · 2b) = (m · (n+ 1) · (n′ + 1)) · 22b

For simplicity, arkworks assumes each limb in the result fits within 22b (i.e.,
2b bits). Hence, the result’s num_of_additions_over_normal_form is set to
m · (n+ 1) · (n′ + 1)− 1.

• Expected Maximum Bit Size of Grouped Limbs. Based on this, if the
surfeit value is correct, then a grouped limb (e.g., l0 + 2b · l1 for group size
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2) should follow the structure illustrated in the following figure:

shift_per_limb

bits_per_limbsurfeit

surfeit

4 bits num_limb_in_a_group  shift_per_limbbits_per_limb - shift_per_limb

Figure 5.2: A grouped limb with group size = 2, showing bit layout of
l0 + 2b · l1.

The maximum bit size should then be BaseF::MODULUS_BIT_SIZE − 4, with
4 bits reserved to avoid overflow when adding padding, carry-in, and grouped
limbs. If surfeit is underestimated, grouped limbs may occupy more than
the allowed space, leading to overflows.

Based on the above reasoning, we hypothesize that the root cause is an under-
estimated surfeit, which leads to an overestimated num_limb_in_a_group. Our
suspicion deepened upon examining the following code involved in computing mul-
tiplication results:

// modified for clarity
Ok(AllocatedMulResultVar {

//...
limbs: prod_limbs,
// num_of_additions_over_normal_form
prod_of_num_of_additions: (self.num_of_additions_over_normal_form

+ BaseF::one())
* (other.num_of_additions_over_normal_form + BaseF::one()),

//...
})

This piece of code is suspicious because:

• After constructing the AllocatedMulResultVar, the group_and_check_equality
function is typically called immediately using the limbs and
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num_of_additions_over_normal_form (named prod_of_num_of_additions
in the code) from this struct. This suggests that the fields of
AllocatedMulResultVar are likely the direct inputs to the function when it
was generating unsatisfiable constraints.

• The num_of_additions_over_normal_form in AllocatedMulResultVar was
underestimated - the critical multiplication by the number of limbs was miss-
ing.

Ultimately, we fixed the code as follows:

// modified for clarity
Ok(AllocatedMulResultVar {

//...
limbs: prod_limbs,
// we slightly overestimate it but it does no harm
prod_of_num_of_additions: (self.num_of_additions_over_normal_form

+ BaseF::one())
* (other.num_of_additions_over_normal_form + BaseF::one())
// newly added
* BaseF::from((params.num_limbs) as u32),

//...
})

After applying this fix (along with additional corrections related to subtraction,
which suffered from the same root cause), we verified that the
group_and_check_equality function no longer produces unsatisfiable constraints.
Finally, we upstreamed the patch, including all fixes, to arkworks2.

5.4 Optimizations
In this section, we present two optimizations we applied to the circuit to reduce
the number of constraints: the first optimizes pairing, and the second optimizes the
folding circuit.

2The pull request is available at https://github.com/arkworks-rs/r1cs-std/pull/157.
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5.4.1 Pairing

Recall the definition of the Verify algorithm for BLS signatures, which involves
checking the equality of a bilinear pairing:

Verify(σ,m) : e(pk,H(m)) = e(g, σ)

This can be naively implemented in arkworks’s R1CS as follows:

let signature_paired = bls12::PairingVar::pairing(
G1PreparedVar::<SigCurveConfig, FV,
CF>::from_group_var(&parameters.g1_generator)?,↪→

G2PreparedVar::<SigCurveConfig, FV,
CF>::from_group_var(&signature.signature)?,↪→

)?;
let aggregated_pk_paired = bls12::PairingVar::pairing(

G1PreparedVar::<SigCurveConfig, FV,
CF>::from_group_var(&pk.pub_key)?,↪→

G2PreparedVar::<SigCurveConfig, FV,
CF>::from_group_var(&hash_to_curve)?,↪→

)?;

signature_paired
.is_eq(&aggregated_pk_paired)?
.enforce_equal(&Boolean::TRUE)?;

However, this implementation can be further optimized. The pairing operation con-
sists of two stages: the Miller loop (which evaluates a function f on the given G1

and G2 points) and the final exponentiation, which raises the result to the power
(pk−1)

r
. For more details, we refer the reader to Section 3 of [Hou23].

A useful observation is that if we denote the Miller loop as M(·, ·), the verification
equation can be rewritten as:

Verify(σ,m) : M(pk,H(m))p = M(g, σ)p

where p is the exponent used in the final exponentiation and is the same on both
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sides. Since the exponent is the same, the equation can be simplified as:

Verify(σ,m) : M(pk,H(m))p = M(g, σ)p

⇐⇒ (M(pk,H(m)) ·M(g, σ)−1)p = 1

⇐⇒ (M(pk,H(m)) ·M(−g, σ))p = 1 (by bilinearity of pairing)

This means we only need to perform a single final exponentiation on the product of
two Miller loop evaluations, instead of computing two separate final exponentiations
and comparing the results.

A preliminary study evaluating the BLS circuit over a native field shows that this
optimization reduces the number of constraints by approximately 20%.

5.4.2 Folding

In sonobe, IVC is modelled through the following trait:

/// slightly modified for clarity
///
/// FCircuit defines the trait of the circuit of the F function,
/// which is the one being folded.
/// The parameter z_i denotes the current state, and z_{i+1} denotes
/// the next state after applying the step.
pub trait FCircuit<F: PrimeField>: Clone + Debug {

type Params: Debug;
type ExternalInputs;
type ExternalInputsVar;

/// returns a new FCircuit instance
fn new(params: Self::Params) -> Result<Self, Error>;

/// returns the number of elements in the state of the FCircuit,
/// which corresponds to the FCircuit inputs.
fn state_len(&self) -> usize;

/// generates the constraints for the step of F for the given z_i
/// and returns z_{i+1}
fn generate_step_constraints(

&self,

53



cs: ConstraintSystemRef<F>,
i: usize,
z_i: Vec<FpVar<F>>,
external_inputs: Self::ExternalInputsVar,

) -> Result<Vec<FpVar<F>>, SynthesisError>;
}

To use sonobe, we must define a circuit that implements this trait. The critical
design task is to determine what states must be returned (i.e., the return value of
generate_step_constraints) and what constraints must be enforced to ensure the
returned state is valid.

Compared to the abstraction of the folding SNARK introduced in Figure 4.3, a
key distinction in sonobe’s interface is that generate_step_constraints requires
the next state to be returned directly. This implies that the next state (i.e., the
checkpoint, in our context) must be passed as part of the external inputs. One
thing not obvious from the above API is that these external inputs - represented by
ExternalInputsVar - are witnesses, just like the signature in our FOLD circuit.

This design choice significantly influences how we implement ExternalInputsVar.
Since it’s a witness, the circuit must enforce constraints to validate its properties.
Specifically, the following conditions must be verified:

• The checkpoint’s signature must lie on the elliptic curve and belong to the
correct subgroup.

• The next committee’s public keys must also lie on the elliptic curve and belong
to the correct subgroup.

Unfortunately, verifying these conditions - especially when using emulated field vari-
ables - is costly. Our preliminary measurements indicate that ensuring a single point
lies in the correct subgroup and on the curve costs approximately 25 million con-
straints. Worse yet, the number of public keys scales with the committee size. For
example, in Ethereum, the light client protocol has a committee size of 512, so
verifying all public keys would incur an overwhelming number of constraints.

However, this cost can be avoided. Recall the security definition of the light client
protocol in Definition 1. The protocol guarantees that each checkpoint is valid, and
specifically that the public keys of the next committee in a checkpoint are cor-
rect because each checkpoint (except the genesis checkpoint, which is automatically
trusted) is signed by the supermajority of the current committee. This signature
is checked within the circuit and covers the entire checkpoint (including the public
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keys of the next committee). Therefore, the soundness of the light client protocol
already implies that the public keys are valid.

As a result, we only need to enforce that the signature lies on the elliptic curve and
in the correct subgroup - this check does not scale with committee size and keeps
constraint costs manageable even when supporting large committees.

55



Chapter 6

Evaluation

In this chapter, we evaluate the performance of our light client protocols (with and
without LMF) and compare the Levelled Merkle Forest (LMF) with the Merkle tree.
All experiments were conducted on an AWS r8g.24xlarge instance with 768 GB of
RAM, 800 GB swaps, and 96 CPU cores.

6.1 Light Client Protocol
In this section, we break down the number of constraints generated by each com-
ponent and evaluate the runtime of folding steps, SNARK proof generation, proof
verification, and peak memory usage during proving. Due to time and memory con-
straints, we extrapolate key performance metrics, such as final proof generation time
and peak memory usage. Specifically, for extrapolation, we run SNARK proofs on
a dummy circuit with the same state length, varying the number of constraints
generated. This extrapolation remains accurate because SNARK proving time and
memory usage primarily depend on the number of constraints and variables, inde-
pendent of the specific computation being proved.

Experiment Setup. The folding-based SNARK was run on MNT4-753 and MNT6-
753 with Nova [KST22] as the IVC scheme and Groth16 [Gro16] as the SNARK
scheme. We analyze both the light client protocol with and without LMF. For the
light client protocol with LMF, we use a checkpoint chain size of 1024, which is
sufficient to cover approximately 3 years of checkpoints for real-world blockchains
such as Ethereum and Sui. For LMF, we use q = 7 (one of the optimal parameter
choices) and compute k accordingly.

Experiment Procedure. We evaluate three committee sizes: n = 128, n = 256,
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and n = 512, which are representative of committee sizes in Ethereum (512 mem-
bers) and Sui (roughly 128 members). For each committee size, we measure the time
to generate five folding steps. After folding, we measure the time to produce the final
SNARK proof. Additionally, we record the verification time and peak memory usage
throughout the entire process.

6.1.1 Results

Number of Constraints

Component Constraints Percentage (%)
Witness Check 24827996 20.00
Public Key Aggregation 8419348 6.78
Hash to Curve 27986621 22.54
Pairing 57011277 45.92
Others 5874757 4.73
Total 124142647 100

Table 6.1: Constraint contributions by component for the light client
protocol (committee size n = 512)

Component Constraints Percentage (%)
Witness Check 24827996 19.66
Public Key Aggregation 8419348 6.67
Hash to Curve 27986621 22.16
Pairing 57011277 45.14
Levelled Merkle Forest 295659 0.23
Others 7750341 6.14
Total 126291242 100

Table 6.2: Constraint contributions by component for the light client
protocol with LMF (committee size n = 512)

Table 6.1 and Table 6.2 show the breakdown of the number of constraints con-
tributed by each major component of the SNARK circuit. Across both variants of
the protocol, pairing operations are the dominant cost, accounting for approx-
imately 46-47% of the total constraints. A closer inspection reveals that this cost is
roughly evenly split between the Miller loop and the final exponentiation, the two
core subroutines of pairing. This highlights a crucial performance bottleneck and
indicates that more optimized R1CS-level pairing gadgets could yield significant
gains. The second most expensive operation is hash-to-curve, accounting for over
22% of the total. A closer look reveals that the overhead largely stems from evaluat-
ing the Blake2s hash function within the circuit, particularly during the expansion
step in the hash-to-field. Switching to a SNARK-friendly hash such as Poseidon
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[GKR+21] could drastically reduce this portion of the constraint budget. The wit-
ness check comes in third, consuming around 20%. This is largely unavoidable, as it
ensures the correctness of witnesses. Interestingly, when we integrate the Levelled
Merkle Forest (LMF), its contribution to the overall constraint count is negligible -
only 0.23% - yet it enables us to offload expensive SNARK proof generation during
proving. This efficiency strongly justifies its inclusion in the design, especially when
balanced against the minimal overhead introduced.
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(a) The folding time of the light client protocol.
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(b) The folding time of the light client protocol with LMF.
Figure 6.1: The folding time of the light client protocol with and without
LMF.

Folding Time. Figure 6.1 presents the folding step times for the light client proto-
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col, both with and without LMF, across committee sizes of 128, 256, and 512.

Across different protocols, the LMF introduces negligible overhead to the folding
step times. For example, at committee size 128, the times without LMF are 785.966,
788.646, 1159.922, 1162.862, and 1163.467 seconds, compared to 793.072, 791.220,
1164.016, 1164.472, and 1165.589 seconds with LMF. This corresponds to overheads
of 0.90%, 0.33%, 0.35%, 0.14%, and 0.18%, respectively. For committee sizes 256
and 512, the maximum observed overhead is less than 1%, confirming that LMF has
minimal impact on computational efficiency.

Across different committee sizes, folding time scales moderately with committee
size while maintaining overall efficiency. For instance, in step 3 without LMF, the
folding time increases from 1159.922 seconds at committee size 128 to 1291.101
seconds at size 512—a rise of 11.31%. Across all steps, the maximum increase from
size 128 to 512 is 17.07%, demonstrating that the protocol scales well and incurs low
computational overhead even for larger committee sizes. This moderate increase is
especially acceptable when contrasted with the significantly higher SNARK proving
cost discussed in Figure 6.2.

Fast Proving in Steps 1-2. A notable pattern is the sharp increase in folding time
at the third step across all committee sizes. While steps 1 and 2 consistently take
under 1000 seconds, step 3 jumps above 1000 seconds - regardless of whether LMF
is used - and subsequent steps remain steady at this elevated level. One plausible
explanation is that the first folding step, being the base case, involves fewer checks
and therefore completes faster. However, the relatively short time for the second step
remains unexplained and warrants further investigation. Future work should include
extensive profiling of the folding workflow to pinpoint the cause of this behaviour.

SNARK

Proving Time. Figure 6.2a and Figure 6.2b illustrate the SNARK proving time re-
quired to generate the final proof. Overall, both plots demonstrate sub-linear growth
in proving time, consistent with the results reported in Nova’s experiments.

Across different protocols, the light client protocols with and without LMF exhibit
similar trends in proving time. The minor variations observed can be attributed to
extrapolation and timing fluctuations. Given the scale of the measurements, these
differences are minimal, within 1%.

Across different committee sizes, an interesting trend emerges. Initially, the protocol
with the largest committee size (n = 512) incurs the highest proving time for both
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(a) Extrapolated SNARK proving time of the light client pro-
tocol.
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(b) Extrapolated SNARK proving time of the light client pro-
tocol with LMF.

Figure 6.2: Extrapolated SNARK proving time of the light client protocol
with and without LMF.

the LMF and non-LMF variants. However, as the number of constraints increases,
its proving time grows more slowly than that of smaller committee sizes (n = 128

and n = 256). As a result, it eventually becomes the most efficient, completing the
proving process faster than the others at larger constraint scales. This suggests that,
under heavier computational loads, the proving time scales more favourably with
larger committee sizes.

The underlying reason for this counterintuitive behaviour remains an open question.
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It could stem from characteristics of the proof system itself or specifics of the imple-
mentation1. A closer look at the time breakdown reveals that the spike in proving
time for n = 128 at a constraint count of 222 coincides with increased setup time,
particularly for SNARK parameter initialization. This trend also echoes the peak
memory usage pattern discussed later in Figure 6.4.

Compared to the folding time, the proving time is significantly longer - approximately
30 times greater, based on extrapolated measurements. This further supports the use
of LMF, as it alleviates the need for prover nodes to perform SNARK compression
at every checkpoint, thereby improving the protocol’s practicality. For example,
assuming a checkpoint generation rate of one checkpoint per day (as in Sui), a chain
of 365 checkpoints representing 1 year of data could be compressed and proved in
under one week when LMF is used.

Verification Time. Figure 6.3a shows the averaged proof verification time of our
light client protocol. Compared to the naive approach described in Protocol 1, our
protocol maintains a constant proof size regardless of the number of checkpoints.
The verification time scales roughly linearly with the committee size, reaching 3.12
seconds for a committee of size 512. Overall, the 1-3 second latency is practical and
responsive for common light client use cases, such as verifying transaction status.

Figure 6.3b presents the averaged verification time for our light client protocol with
LMF integration. As observed previously, the verification time scales linearly with
committee size, reaching 3.21 seconds at size 512. Despite a minor increase of 0.1
seconds in verification time, the LMF offers substantial benefits - such as reducing
proving time and enabling fast verification once the LMF state is verified - which
fully justifies this slight overhead.

Peak Memory Usage

Figure 6.4a and Figure 6.4b illustrates the peak memory usage of the light client
protocol across three different committee sizes.

Across different protocols, the difference in peak memory usage between versions with
and without LMF remains minimal - within approximately 1% across all committee
sizes - demonstrating once again the low overhead and practicality of integrating
LMF into the protocol.

Across different committee sizes, the memory usage trends closely mirror those ob-
1For instance, developers of the sonobe are investigating similar regressions in performance of

their on-chain decider: https://github.com/privacy-scaling-explorations/sonobe/issues/
211.

61

https://github.com/privacy-scaling-explorations/sonobe/issues/211
https://github.com/privacy-scaling-explorations/sonobe/issues/211


128 256 512
Committee Size (n)

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
SN

AR
K 

Ve
rif

ica
tio

n 
Ti

m
e 

(s
ec

on
ds

)

1.13 s

1.95 s

3.12 s
Average SNARK Verification Time by Committee Size

Average Verification Time

(a) The proof verification time of the light client protocol, av-
eraged across 5 runs for each committee size.
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(b) The proof verification time of the light client protocol with
LMF, averaged across 5 runs for each committee size.

Figure 6.3: The proof verification time of the light client protocol with
and without LMF.

served in Figure 6.2. Initially, the protocol with n = 128 consumes less memory
than configurations with larger committees. However, starting at a constraint count
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(a) Extrapolated proving memory usage of the light client pro-
tocol.
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Figure 6.4: Extrapolated proving memory usage of the light client proto-
col with and without the LMF structure. Due to the inherent overhead
of basic witness checks generated by each circuit, some x-axis values are
unavailable for certain circuits. For example, the green line begins at
x = 220, whereas the other line starts earlier.

of 222, its memory usage surpasses that of n = 256 and n = 512. This high growth
rate leads to n = 128 ultimately requiring more memory than n = 256 and n = 512

at extrapolated scales. This indicates that, under the same constraint load, n = 128

is more memory-intensive.

Understanding this unexpected behaviour remains an open question. Given that
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similar trends appear in the proving time analysis, we hypothesize that the SNARK
parameter generation and proving stages for n = 128 may exhibit characteristics
that result in a disproportionately high memory growth rate. Future work should
investigate the internals of these stages to better understand the cause.

6.2 Levelled Merkle Forest
In this section, we evaluate the construction time, proof size, proof time, and peak
memory usage of the Levelled Merkle Forest (LMF), and show that our imple-
mentation achieves performance comparable to traditional Merkle trees, while also
enabling reduced proof sizes through variable-length proving.

Experiment Setup. We use the Poseidon hash function, instantiated over the
scalar field of the BLS12-381 curve. For LMF, we use q = 7 (one of the optimal
parameter choices) and compute k based on the size of the committed vector.

Experiment Procedure. We vary the vector size from n = 215 to n = 219 and
measure the performance impact. For each n, we construct both a standard Merkle
tree and an LMF, select 10 random leaves, and measure the average time to generate
fixed-size proofs for these leaves. Additionally, we provide an analytical study of how
the size of a variable-length proof changes as a function of the index being proved.

6.2.1 Construction
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Figure 6.5: Metrics about the construction of Merkle tree and LMF.

Construction Time: Both Merkle Tree and LMF construction times scale approx-
imately linearly with the vector size n (e.g., from 2.51s to 5.08s for the Merkle tree,
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and 2.52s to 5.11s for the LMF when n increases from 215 to 216), which aligns with
our asymptotic analysis.

LMF construction is slightly slower than that of a traditional Merkle tree (e.g.,
40.86s vs. 40.61s for n = 219). This minor overhead is likely due to the additional
bookkeeping required in LMF’s levelled structure. This effect is also reflected in the
higher peak memory usage observed in Figure 6.5b. Nevertheless, the construction
time difference is small - typically within 1-2% - demonstrating that LMF provides
construction performance comparable to that of traditional Merkle trees.

Peak Memory Usage. Similar to construction time, the peak memory usage of
both the Merkle tree and LMF grows roughly linearly with n. Interestingly, LMF
initially consumes more memory, likely due to the computed value of k being based
on upper bounds for the number of states in the R1CS. These conservative estimates
may lead to allocating more trees than necessary, inflating memory usage.

In the mid-range of n, LMF achieves on-par or slightly better memory performance
compared to the Merkle tree. However, for large values (e.g., n = 219), LMF’s mem-
ory usage becomes noticeably higher. This overhead again stems from its levelled
construction: tree digests must be cached in a vector to build the next level, increas-
ing both memory usage and, slightly, construction time. Despite this, the overall
memory usage difference remains modest, within 5%, indicating that LMF main-
tains competitive memory efficiency while offering structural advantages for proof
size and verification.

6.2.2 Fixed-Size Proof
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Proof Size: LMF fixed proof sizes are generally slightly larger than those of Merkle
trees (e.g., 22 vs. 19 for n = 219). However, they do not consistently grow with n
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- for instance, the size remains constant at 18 for n = 215 and 216, and at 20 for
n = 217 and 218. Overall, the results show that LMF achieves proof sizes comparable
to traditional Merkle trees.

Proof Time: Proof generation times for both structures are in the microsecond
range, but LMF proof times are slightly higher. These higher proof times may be
attributed to the computational overhead of handling its levelled structure.

6.2.3 Variable-Length Proof

Recall from Section 4.3.4 that for any vi such that n−i ≤
(
q+1
2

)l, the hash of its Ml−1

is stored in Ml within the state. This implies that a proof of length approximately
log2

q+1
2
· l suffices for vi. Figure 6.7 illustrates how the variable-length proof size

changes with the index being proven, for vectors of length 215 to 219.

Step-like Behavior. The step-like behaviour observed in the graph arises from
discrete transitions in the level l, determined by the condition n− i ≤

(
q+1
2

)l. As i

increases from 0 to n−1, n− i decreases, crossing powers of
(
q+1
2

)
and decrementing

l. Each decrement in l decreases the proof size, resulting in the characteristic jumps
from 2l + 2 to 2l.

Proof Size. A key trend is that variable-length LMF proofs are consistently smaller
than those of Merkle trees across all indices. For example, when n = 218, the proof
size starts at 16 for i = 0, compared to 18 for Merkle trees. As i approaches n, the
proof size rapidly shrinks due to the logarithmic nature of level l. In such regions,
LMF reaches peak efficiency, producing proofs of size 6 or 8 - significantly smaller
than the log2 n required by Merkle trees - and even as small as 0 for indices extremely
close to n (within (q + 1)/2).

When n is not a power of q+1
2

, variable-length proofs offer limited improvements. For
instance, with n = 219, the proof size remains constant across indices - even though
still smaller than Merkle tree proofs - because n is rounded up to the nearest power
of q+1

2
for correctness when producing the proof. As a result, even the largest index

219 − 1 maps to level l = 9, corresponding to a proof size of 18. Nevertheless, this
worst-case scenario still outperforms Merkle trees.

This efficiency underscores the practical advantage of LMF, especially in light client
protocols where recent states (i.e., indices near n) are queried more frequently.
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Figure 6.7: Size of the variable-length proof vs. the index being proven.
For each n, the plot is generated by sampling 1000 evenly spaced indices
from 0 to n − 1. When n is not a power of q+1

2
, it is rounded up to the

next power of q+1
2

when determining the size of the variable length proof,
mimicking the behaviour of the actual LMF. The dashed line indicates
the size of a traditional Merkle proof, while the solid line represents the
size of the variable-length proof.
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Chapter 7

Discussion

In this chapter, we discuss several open problems and directions for improvement in
our design.

7.1 Forking
We proved the security of our light client protocol using folding-based SNARKs in
Section 4.2.3. This proof relies on the underlying security assumptions of the light
client protocol as defined in Definition 1. However, this security can be violated in
the presence of a fork.

Formally, a fork occurs when a supermajority of the committee at checkpoint cpi

signs two conflicting checkpoints cpi+1 and cp′i+1. This event causes the chain to
split into two branches, C and C ′, where one continues from cpi+1 and the other
from cp′i+1. Forks may arise from both technical and non-technical causes, such as
the Ethereum DAO incident [SMG+17], where the Ethereum community voted to
revert the state to before an exploit that resulted in a 50M USD theft.

In such scenarios, our light client protocol would accept proofs from both chains,
allowing a light client on chain C to accept a proof for a checkpoint cp′ ∈ C ′ and
mistakenly assume cp′ is valid on C.

To mitigate the impact of forks, both chains can continue using our light client
protocol by redoing the setup phase. Instead of continuing with the original gen←
FoldingSNARK.Setup as the genesis state, each chain can rerun the setup and use
the first divergent checkpoint as the new genesis. This ensures that a light client
only accepts proofs generated from the correct fork. However, a cautious light client
may additionally verify the validity of the new genesis state by checking it against
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the old light client protocol on the non-forked chain.

7.2 Practicality
In our evaluation, we demonstrate the performance of the proposed LMF data struc-
ture and assess the efficiency of the light client protocol. One major limitation, how-
ever, lies in the high SNARK proving time and substantial memory requirements
during proving. While the proving time remains within a manageable range - typ-
ically under half a day - and aligns well with the checkpoint frequency of systems
like Ethereum and Sui (approximately once per day), the memory demand presents
a significant practical challenge. Most commercially available machines are unable
to execute the folding-based SNARK. The closest AWS instances capable of run-
ning our circuit - u-9tb1.112xlarge and u7i-8tb.112xlarge - cost around $80
per hour, rendering them financially impractical for many real-world deployments.

Despite these constraints, the proposed scheme represents a valuable first-of-its-kind
baseline, exposing the limitations of current techniques and outlining directions for
future improvement. Importantly, while the proving process is expensive, it is a
one-time cost: a single proof can be reused by an unlimited number of light clients,
which may justify the initial investment. However, the question of how to incentivize
participants to serve as prover nodes under such high costs remains open. Addressing
performance bottlenecks is another promising avenue, as efficiency improvements
could substantially lower operational costs and enhance the system’s practicality.

7.3 Future Work
Parallelism. The performance of the light client protocol in Protocol 4 (folding-
based SNARK + LMF) can potentially be improved through parallelization. Al-
though the IVC process is inherently sequential, it is possible to divide the checkpoint
chain into multiple segments and generate proofs for each segment using different
checkpoints as genesis. Once each segment is proven, a final SNARK proof can be
generated to aggregate the resulting LMF digests into another Merkle tree. For ver-
ification, the prover provides the light client with this final proof, the Merkle root,
the LMF state relevant to the client’s request, and an LMF proof for the queried
checkpoint. Future work can explore the performance trade-offs of this approach for
both provers and light clients.

Folding at Different Levels. Our solution currently relies on folding-based IVC
techniques to aggregate multiple instances. However, there are other layers where
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aggregation could occur. For instance, BLS signatures support aggregation, en-
abling the verification of multiple signatures simultaneously. This raises the ques-
tion: should we first aggregate using BLS signature techniques and then generate
the proof, or should we perform all aggregation through folding-based SNARKs?
Based on current observation, given the already high memory usage, employing
BLS aggregation within the circuit may not be feasible, as it increases the number
of constraints.

Co-design of Light Client Protocol and SNARK Proof System. Our current
implementation assumes that existing signature and hash schemes in the light client
protocol cannot be changed. As a result, we rely on field emulation for general com-
patibility and use Blake2s as the underlying hash function. However, co-designing
the light client protocol in tandem with the SNARK system could yield substan-
tial efficiency gains. For instance, adopting transitive signature schemes - such as
those utilized in [AKMW24], which modify BLS signatures to sign the quotient of
two hashes instead of a single one - could enable efficient aggregation of signatures.
Alternatively, signature schemes like Schnorr [Sch91], which avoid expensive pair-
ing operations, could eliminate the need for field emulation. Moreover, embedding a
Merkle accumulator or the LMF state directly within the checkpoint data structure
would allow Merkle or LMF state verification to occur outside the R1CS circuit,
reducing constraint counts. Finally, using SNARK-friendly hash functions such as
Poseidon [GKR+21] could substantially reduce the number of constraints. However,
further research is needed to explore how Poseidon can be integrated into hash-to-
curve, as current standards do not define support for hash functions that operate
over finite fields. Future work can explore such co-design opportunities to create light
client protocols that are natively optimized for SNARK-based proving systems.

Better Proof Systems. Our implementation uses the classic Groth16 [Gro16] proof
system, primarily because it is the only system that properly implements the SNARK
trait in arkworks, which is required by sonobe to interface with the proof system.
This choice limits our ability to select efficient cycles of elliptic curves since we must
find two curves that satisfy both the cycle condition and have pairing support. Con-
sequently, we use the computationally expensive MNT4_753 and MNT6_753 curve
pair [BSCTV14]. Future work can enhance the arkworks ecosystem by implement-
ing the SNARK trait for proof systems like Spartan1, unlocking performance gains by
allowing the use of more efficient cycles like the Pasta curves [Hop20], which offer
smaller field sizes without sacrificing security. This leads to faster proving time,
smaller proof sizes, and more efficient verification.

1https://github.com/arkworks-rs/spartan

70

https://github.com/arkworks-rs/spartan


Improved Pairing Algorithms for Emulated Field. When implementing R1CS,
developers often use tricks to optimize circuits by minimizing the number of mul-
tiplication gates, under the assumption that additions and constant multiplications
are free. This assumption holds for native field elements. However, when using field
emulation (as in arkworks, following [KPS18]), this no longer applies - constant
operations are just as expensive as variable ones. Interestingly, arkworks offers a
special operation mul_without_reduce, which returns an unreduced variable, after
multiplication, supporting further additions. Thus, a pattern like
mul_without_reduce + additions + reduce could be more efficient than
mul + additions2. Future work can exploit these characteristics to design more
efficient pairing algorithms tailored for emulated fields.

Empirical Study on Access Patterns. In Section 4.3.1, based on observations
in [AKMW24], we hypothesize that access to checkpoints is non-uniform - recent
checkpoints are accessed more frequently than older ones. However, there is currently
no empirical study that formally confirms or models this behaviour. Conducting such
a study would provide valuable data to model access distributions and inform the
design of variable-length proofs.

2Currently, arkworks does not implement addition on unreduced results correctly. We high-
lighted this in https://github.com/arkworks-rs/r1cs-std/pull/157.
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Chapter 8

Conclusion

In this work, we propose a protocol designed to enable light clients to efficiently
verify blockchain state, with a particular focus on committee rotation. By utilizing
folding-based SNARK and a novel LMF data structure, we address the challenges of
verifying committee rotations in resource-constrained environments. Our approach
not only minimizes verification time but also allows variable-length proofs, optimiz-
ing the efficiency of light-client protocols.

We implement a widely used hash-to-curve algorithm for BLS12 curves in the
arkworks ecosystem, which can be widely used beyond this work. In addition, our
proposed LMF provides a promising avenue for improving the efficiency of proof
generation in systems that require variable-length proofs. We have also successfully
identified and resolved a bug in the arkworks library that ensures reliable use of
field emulation in R1CS circuits.

While our system offers significant improvements, we have also recognized some
limitations. The proof remains impractical for certain use cases, primarily due to
the large memory requirements. In addition, while the LMF data structure reduces
the need for expensive proofs, it also increases memory consumption. Future work
could explore more efficient pairing algorithms, better proof systems, and SNARK-
friendly signature schemes to improve the utility and scalability of our protocol.

In summary, this paper contributes to the field by providing a novel light client
protocol that offers both theoretical and practical insights. We hope that this work
will lay the foundation for the future development of secure and efficient light client
protocols.
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Appendix A

SNARK Definition

We define completeness, knowledge soundness, non-interactivity, succinctness, and
zero-knowledge for a SNARK below [DCB25, PSG+24, BGS+23].

• Completeness: If (x,w) ∈ R, then verification should pass. That is, for all
λ ∈ N and all (x,w) ∈ R:

Pr

[
Verify(vk, x, π) = 1 :

pk, vk $← Setup(1λ, R),

π ← Prove(pk, x, w)

]
= 1

• Knowledge Soundness: For any relation R, and any PPT adversary A, there
exists a PPT extractor E such that the following probability is negligible in
λ.

Pr

 Verify(vk, x, π) = 1

∧(x,w) /∈ R
:

pk, vk $← Setup(1λ, R),

(x, state)
$← A(pk, vk)

w
$← E(state, pk, x)


• Non-interactivity: The proof is non-interactive.

• Succinctness: The proof size is o(|w|) and the verifier can run in Oλ(|x|) +
oλ(|C|) where |C| is the number of the constraints in the arithmetic circuit.

• Zero-Knowledge: Consider an oracle H : X → Y for some finite sets X and
Y . The zk-SNARK is zero knowledge in the random oracle model if there is a
PPT simulator Π such that for all (x,w) ∈ R and all PPT adversaries A, the
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following function is negligible

Advzk
A,Π(λ) :=

∣∣∣∣∣ Pr
[
AH((pk, vk), x,ProveH(pk, x, w)) = 1

]
−

Pr
[
AH[h]((pk, vk), x, π) = 1

] ∣∣∣∣∣
where pk, vk $← Setup(1λ, R), (π, h) $← Π((pk, vk), x), h : X → Y is a partial
function, and H[h] refers to the oracle H : X → Y modified by entries of h.
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Appendix B

Project Plan and Interim Report

B.1 Project Plan

B.1.1 Background

Since the introduction of Bitcoin, blockchain has evolved into a transformative force
in a variety of fields and communities. Originally popularized as the backbone of
cryptocurrencies [YW18], blockchain has now enabled a wide range of applications,
including decentralized finance (DeFi) [WPG+23], non-tamperable tokens (NFT)
[WLWC21] and healthcare [AME19]. In simple terms, blockchain is a distributed
system where each node keeps a copy of all transactions. When new transactions
occur in the network, nodes reach a consensus according to a defined protocol to
extend the blockchain.

With the gradual development of blockchain, different types of nodes have started
to emerge. They can generally be categorized as follows. Consensus nodes are
responsible for ensuring the integrity and security of the network by running a
consensus protocol to agree on the state of the blockchain. Full nodes maintain
a complete copy of the blockchain, store all historical data, and communicate with
other full nodes through the gossip protocol. These nodes have sufficient resources
to handle the storage, bandwidth, and computation requirements associated with
maintaining the entire blockchain history. On the other hand, light clients are
clients with limited resources (e.g., mobile devices or browsers). They do not store
the complete blockchain and lack the resources to perform heavy computational
tasks. Instead, they rely on full nodes to act as intermediaries, fetching blockchain
data and submitting transactions on their behalf [CBC22].
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For example, the Simplified Payment Verification (SPV) protocol, as proposed in the
Bitcoin whitepaper [Nak08], is a protocol that allows light clients to verify trans-
actions without downloading the full blockchain. Similarly, in Ethereum [ACP+24],
there is a light-client protocol that relies on checkpoints and a committee-based
mechanism to account for the chain’s fast block generation rate. However, although
called light client protocols, these protocols may still be too resource intensive for
some lightweight environments because light clients still need to download some
data that is linearly proportional to the size of the chain (e.g., the chain of block
headers in SPV). After downloading the data, the client also needs to verify that the
downloaded chain of headers starts from the genesis block and that each block in it
has been correctly agreed upon by the consensus nodes, which is also an operation
that is linearly proportional to the chain size. This kind of data and operation is
too demanding for lightweight clients, considering that many of the latest chains
optimize block generation rates [NAK+22] and lightweight clients often go through
offline phases [CBC22].

To solve this, the full nodes need to compress the information sent to the client, while
still providing the security guarantee that the light client wants. A promising solution
is to leverage SNARK, which are succinct non-interactive proofs (arguments) of
knowledge [BBB+18, GWC19, XZZ+19]. It provides a complete, knowledge-sound
and succinct proof system. Recursive SNARK [BCCT13], which is a technique
that composes SNARK together, enables even more efficient proof generation and
verification for Incrementally Verifiable Computation (IVC) [Val08]. It is particularly
useful in blockchain (which can be formulated as an IVC problem), utilizing which
full nodes can generate succinct and efficient proofs, thus greatly reducing the burden
on light clients. This scheme is further improved with a series of recent efforts to
design folding schemes [BGH19, KST22, KS24]. Using the folding scheme, provers
can fold multiple witnesses for the same instance together, and then only generate
a proof for the single folded instance, thus reducing the proving time.

Due to its appealing features, SNARK has been deployed in a variety of existing pro-
tocols and blockchains. For example, zkEVM [LLM+24] embeds SNARK proofs into
Ethereum Virtual Machine (EVM) executions to prove the correctness of execution
of transactions in Ethereum. However, this is not a solution to our problem because
it focus on proving the correctness of transaction rather than consensus. zkbridge
[XZC+22] is a protocol that utilizes SNARK to support for cross-chain transactions.
It is more relevant to our problem, but its security is based on the assumption that
there exists a consistent, succinct, and live light-client protocol, which is what we
want to improve upon, and it only proves one state transition at a time. Compared
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with the previous approaches, Mina [BMRS20b] goes a step further. It designs the
entire blockchain based on SNARK, which provides proof of security for consensus
and transaction execution whenever a block is generated. Thus, in Mina, light clients
have the same full security guarantees as full nodes [Fou21]. However, its approach
is not directly applicable to our work; our goal is to focus on proving the correctness
of consensus and designing a generalized protocol for different chains.

B.1.2 Aims and Objectives

Aims

Thus, the aims of this project are

• Design a secure protocol that enables efficient and succinct verification of the
blockchain consensus. Specifically, the focus is on supporting the verification
of a chain of signatures, which is often used in blockchain checkpoints and is
an important part of light client protocols.

• Make the protocol practical by exploring possible performance optimizations
and implementing it on a real blockchain.

Objectives

• Review various blockchains and explore how to programmatically interact with
them, in particular how to query the blocks and checkpoints and verify that
the consensus is done correctly.

• Define the security properties of the protocol, design it and prove its security.

• Implement different SNARK circuits that instantiate the protocol and are
capable of verifying the checkpoints validity for real-world blockchains.

• Experiment and analyze the performance of different circuit implementations
and suggest performance optimizations for the circuits and protocols.

• Evaluate the feasibility of deploying the protocol in a real-world blockchain,
including providing specific cost analysis.

B.1.3 Expected Outcomes and Deliverables

• A protocol that enables efficient and succinct verification of the real-world
blockchain’s consensus and a proof that it is secure (with respect to certain
properties we want).
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• A series of experiments on real blockchains evaluating different SNARK im-
plementations, with analysis and discussion of their performance.

• A feasibility analysis of the proposed protocol on real-world blockchains from
cost and performance perspectives.

• Some examples of circuit implementations that can verify certain blockchain
checkpoints.

B.1.4 Work Plan

• 07/10/24 to 08/11/24 (5 weeks): Review various papers that system-
atize knowledge of distributed systems and blockchains from different per-
spectives (e.g., structures, consensus mechanisms, streamlined clients, etc.).
Develop project directions by exploring various blockchain scanner platforms,
archive node designs, and how cryptographic constructions are used in the
latest blockchains (e.g., Verkle Tree, SNARK, and zk-bridge).

• 09/11/24 to 21/12/24 (6 weeks): Continue to explore the math behind the
folding scheme and how to build a folding-based SNARK. Develop a proof-of-
concept for circuits capable of verifying consensus in blockchains like Ethereum
and Cosmos. Draft the security proof of the proposed protocol. Write the
interim report.

• 22/12/24 to 28/02/25 (11 weeks): Complete and submit interim reports.
Design and implement various baselines for experiments (monolithic SNARK,
recursive SNARK, folding-based SNARK, parallel folding-based SNARK (if
possible)). Evaluate the performance of different circuits and think about how
to improve the performance of the verifier without compromising protocol
security. Perform some concrete cost analysis of the proposed protocol (e.g.,
how much it costs to generate a proof for each block). Start writing the final
report.

• 01/03/25 to 28/03/25 (4 weeks): Continue the experiment and the eval-
uation. Finish final report.

• 01/04/25 to 25/04/25 (4 weeks): Iteratively revise the final report and
refine some of the analyses and experiments.
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B.2 Interim Report

B.2.1 Progress

• Reviewed relevant literature on BLS signatures (e.g., rogue public key attacks),
BLS12-381 curves (e.g., curve equations, twist, isogeny, and hash-to-curve al-
gorithms), lattice-based folding schemes, and SNARK applications.

• Learned arkworks, a popular library for building SNARK on Rust. Here is a
summary of the topics I explored:

• ark-ff (arkworks representation of finite field): Montgomery modular mul-
tiplication and how to define prime and generic fields (prime + extension) in
arkworks.

• ark-ec (arkworks representation of elliptic curve): Montgomery ladder, co-
factors, Jacobian coordinates, elliptic curve point serialization and embedding
degree.

• ark-r1cs-std (arkworks representation of R1CS): representation of con-
straint systems, field variables and field emulation.

• Explored how Sui Blockchain checkpoints work: understanding how commit-
tees are represented and how checkpoints and their summary are constructed,
signed, and verified.

• Implemented BLS signatures on arkworks, including parameter generation,
signing, and batch verification.

• Implemented 90% of BLS signatures on arkworks R1CS. In the process, I
patched hundreds of lines of code in arkworks to enable the usage of emulated
field variables in the circuit, optimized the circuit to reduce the number of
generated constraints by 2/5, and created an implementation of hash-to-field.

• Did some initial testing on AWS EC2 machines.

B.2.2 Remaining Work

• Implement map to curve and cofactor clearing in R1CS to complete the im-
plementation of hashing to curve primitive.

• Fix bug in arkworks related to emulated field variable.
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• Experiment with constraint generation and use SNARK (e.g. Groth16) to
prove BLS signature verification.

• Implement recursive SNARK for committee rotations.

• Explore and implement a folding scheme to speed up the recursive SNARK
proof process.

B.2.3 Updated Work Plan

• 24/01/25 to 07/02/25 (2 weeks): Complete hash-to-curve implementation.
Fix bug in arkworks.

• 08/02/25 to 28/02/25 (3 weeks): Set up experimental environment (on Sui
or in a simulated blockchain). Implement committee rotation validation. De-
sign and implement various baselines (recursive SNARK, folding-based SNARK,
parallel folding-based SNARK (if possible)). Evaluate the performance of dif-
ferent circuits. Think about how to improve performance where possible.

• 01/03/25 to 14/03/25 (2 weeks): Continue the experiment. Perform con-
crete cost analysis of the proposed protocol (e.g., how much it costs to generate
a proof for each block). Start writing the final report. Finish final report.

• 15/03/25 to 31/03/25 (2 weeks): Begin writing and complete the final
report.

• 01/04/25 to 25/04/25 (4 weeks): Iteratively revise the final report and
refine some of the analyses and experiments.

86



Appendix C

Code and Experiment Data

The code and experimental data are publicly available at https://github.com/
yuxqiu/mim, with the experiment data located in the exp directory.
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