LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

Yuxiang Qiu 2025.03.28

Outline

- 1. Background
- 2. Quantization
- 3. Evaluation
- 4. Outlier Features
- 5. Discussions

Background

Layers

- **MLP**¹
 - Expansion Layer
 - Contraction Layer
- Attention Block
- Transformer Block

¹Figure adapted from slides by Zsolt Kira: https://faculty.cc.gatech.edu/~zk15/teaching/AY2024_cs7643_spring/assets/L4_GradientDescent_NNs.pdf

Layers

- MLP
- Attention Block
 - ► 4 Projection (Linear) Layers
 - Key, Value, Query, Output
- Transformer Block

Layers

- MLP
- Attention Block
- Transformer Block
 - Attention Block
 - ► MLP

Transformer Block
MLP
Attention Block

Scenarios

- Training
 - Forward Pass (value) + Backward Pass (gradient)
 - Forward Pass results need to be stored in memory
- Finetune
 - Similar to training, but sometimes with most of the weights freezed
- Inference
 - Forward Pass only

Scenarios

- Training
- Finetune
- Inference

Motivation

- So, what's the problem with the inference?
 - Model is large: OPT-175B/BLOOM
 - Weights need to be loaded into GPU memory
 - ▶ 175B parameters (16 bit) -> 8x A100 (80G) -> 💰 150000+

Motivation

- So, what's the problem with the inference?
 - Model is large: OPT-175B/BLOOM
 - Weights need to be loaded into GPU memory
 - ▶ 175B parameters (16 bit) -> 8x A100 (80G) -> 💰 150000+
- Solution: load "less" weights -> Quantization

Previous Attempts

- Degrade performance
- Require further tuning
- Only been studied for models with less than 350M parameters

Previous Attempts

- Degrade performance
- Require further tuning
- Only been studied for models with less than 350M parameters

So, how to do **degradation-free quantization** up to **billions of parameters?**

Quantization

- Quantize fp16 matrices to int8 matrices
- Support matrix multiplication

Absmax

- Absolute Maximum Quantization
- Scale input into [-127, 127] ranges

$$egin{aligned} oldsymbol{X}_{i8} = \left\lfloor rac{127 \cdot oldsymbol{X}_{f16}}{\max_{ij}ig(ig|oldsymbol{X}_{f16}ig|ig)}
ight
ceil = ig|s_{x_{f16}}oldsymbol{X}_{f16} ig) \end{aligned}$$

Absmax

- Absmax is bad when the data is asymmetric.
- Shift the input into the range [-127, 127] by scaling with the normalized dynamic range nd_x and shifting by the zeropoint zp_x

$$\begin{split} nd_{x_{f16}} &= \frac{2 \cdot 127}{\max_{ij} \left(\boldsymbol{X}_{f16}^{ij} \right) - \min_{ij} \left(\boldsymbol{X}_{f16}^{ij} \right)} \\ zp_{x_{i16}} &= \left\lfloor X_{f16} \cdot \min_{ij} \left(\boldsymbol{X}_{f16}^{ij} \right) \right\rfloor \\ X_{i8} &= \left\lfloor nd_{x_{f16}} X_{f16} \right\rfloor \end{split}$$

• However, the formula in the paper is wrong.²

²Their code for calculating zeropoint is also wrong, but in a different way: see e1f515. A few hours after making the slides, the wrong test was removed from the main branch.

- However, the formula in the paper is wrong.
- Let's recall our goal:

$$egin{aligned} nd_{x_{f16}} &\cdot \min_{ij}ig(X^{ij}_{f16}ig) + zp_{x_{i16}} = -127 \ nd_{x_{f16}} &\cdot \max_{ij}ig(X^{ij}_{f16}ig) + zp_{x_{i16}} = 127 \end{aligned}$$

Solving the above equations gives us

$$\begin{split} nd_{x_{f16}} &= \frac{2 \cdot 127}{\max_{ij} \left(X_{f16}^{ij} \right) - \min_{ij} \left(X_{f16}^{ij} \right)} \\ zp_{x_{i16}} &= - \left\lfloor nd_{x_{f16}} \cdot \min_{ij} \left(X_{f16}^{ij} \right) \right\rceil - 127 \end{split}$$

Given input $X_{f16} \in \mathbb{R}^{s \times h}$ and weights $W_{f16} \in \mathbb{R}^{h \times o}$ with sequence dimension s, feature dimension h, and output dimension o,

$$m{X}_{f16} m{W}_{f16} pprox rac{1}{s_{x_{f16}} s_{w_{f16}}} \cdot m{X}_{i8} m{W}_{i8}$$
 (absmax)

$$\boldsymbol{X}_{f16} \boldsymbol{W}_{f16} \approx \frac{1}{nd_{x_{f16}} nd_{w_{f16}}} \cdot \left(\boldsymbol{X}_{i8} - zp_{x_{i16}} \right) \cdot \left(\boldsymbol{W}_{i8} - zp_{w_{i16}} \right) \quad (\text{zp})$$

- zeropoint is not used due to the need to add zp to quantized values³

³some GPUs/TPUs don't support this

$$\boldsymbol{X}_{f16} = \boldsymbol{W}_{f16} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \xrightarrow{\text{absmax quantization}} \begin{pmatrix} 64 & 127 \\ -127 & 64 \end{pmatrix}$$

$$\boldsymbol{X}_{f16} = \boldsymbol{W}_{f16} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \xrightarrow{\text{absmax quantization}} \begin{pmatrix} 64 & 127 \\ -127 & 64 \end{pmatrix}$$

$$\boldsymbol{X}_{i8} \boldsymbol{W}_{i8} = \begin{pmatrix} -12033 & 16256 \\ -16256 & -12033 \end{pmatrix} \xrightarrow{\text{dequantization}} \begin{pmatrix} -2.98 & 4.03 \\ -4.03 & -2.98 \end{pmatrix}$$

$$\boldsymbol{X}_{f16} = \boldsymbol{W}_{f16} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \xrightarrow{\text{absmax quantization}} \begin{pmatrix} 64 & 127 \\ -127 & 64 \end{pmatrix}$$

$$\boldsymbol{X}_{i8} \boldsymbol{W}_{i8} = \begin{pmatrix} -12033 & 16256 \\ -16256 & -12033 \end{pmatrix} \xrightarrow{\text{dequantization}} \begin{pmatrix} -2.98 & 4.03 \\ -4.03 & -2.98 \end{pmatrix}$$

$$oldsymbol{X}_{f16}oldsymbol{W}_{f16}=egin{pmatrix} -3 & 4\ -4 & -3 \end{pmatrix}$$

Let's consider a different input matrix

$$oldsymbol{X}_{f16} = egin{pmatrix} 3 & 508 \ 1 & 1 \end{pmatrix}$$

Let's consider a different input matrix

$$m{X}_{f16} = egin{pmatrix} 3 & 508 \ 1 & 1 \end{pmatrix}$$

After quantization, we have

$$X_{f16} = egin{pmatrix} 1 & 127 \ 0 & 0 \end{pmatrix}$$

- Quantize each row of X_{f16} independently

- Quantize each row of $oldsymbol{X}_{f16}$ independently

$$\boldsymbol{X}_{f16} = \begin{pmatrix} 3 & 508\\ 1 & 1 \end{pmatrix} \xrightarrow{\text{rowwise quantization}} \begin{pmatrix} 1 & 127\\ 127 & 127 \end{pmatrix}, \ S_{x_{f16}} = \begin{pmatrix} 0.25\\ 127 \end{pmatrix}$$

- Quantize each row of $oldsymbol{X}_{f16}$ independently

$$\begin{split} \boldsymbol{X}_{f16} &= \begin{pmatrix} 3 & 508\\ 1 & 1 \end{pmatrix} \xrightarrow{\text{rowwise quantization}} \begin{pmatrix} 1 & 127\\ 127 & 127 \end{pmatrix}, \quad \boldsymbol{S}_{x_{f16}} = \begin{pmatrix} 0.25\\ 127 \end{pmatrix} \\ \boldsymbol{W}_{f16} &= \begin{pmatrix} 1\\ 2 \end{pmatrix} \xrightarrow{\text{absmax quantization}} \begin{pmatrix} 64\\ 127 \end{pmatrix}, \quad \boldsymbol{S}_{w_{f16}} = 63.5 \end{split}$$

- Quantize each row of $oldsymbol{X}_{f16}$ independently

$$\begin{split} \boldsymbol{X}_{f16} &= \begin{pmatrix} 3 & 508\\ 1 & 1 \end{pmatrix} \xrightarrow{\text{rowwise quantization}} \begin{pmatrix} 1 & 127\\ 127 & 127 \end{pmatrix}, \quad \boldsymbol{S}_{x_{f16}} = \begin{pmatrix} 0.25\\ 127 \end{pmatrix} \\ \boldsymbol{W}_{f16} &= \begin{pmatrix} 1\\ 2 \end{pmatrix} \xrightarrow{\text{absmax quantization}} \begin{pmatrix} 64\\ 127 \end{pmatrix}, \quad \boldsymbol{S}_{w_{f16}} = 63.5 \\ \boldsymbol{X}_{f16} \boldsymbol{W}_{f16} &= \begin{pmatrix} 1019\\ 3 \end{pmatrix} \quad \text{and} \quad \boldsymbol{X}_{i8} \boldsymbol{W}_{i8} = \begin{pmatrix} 16193\\ 24257 \end{pmatrix} \xrightarrow{\text{dequantization}} \begin{pmatrix} 1020.03\\ 3.01 \end{pmatrix} \end{split}$$

Let's consider a different weight matrix

$$W_{f16}=egin{pmatrix} 3 & 508\ 1 & 1 \end{pmatrix}$$

Let's consider a different weight matrix

$$W_{f16}=egin{pmatrix} 3 & 508 \ 1 & 1 \end{pmatrix}$$

After quantization, we have

$$\begin{pmatrix} 1 & 127 \\ 0 & 0 \end{pmatrix}$$

Matrix Multiplication - Vectorwise

Observations: matmul are a sequence of independent inner products

•
$$XW_{ab} = \sum_{h} X_{ah} W_{hb} = \left\langle X_a, W_b^T \right\rangle$$

Matrix Multiplication - Vectorwise

Observations: matmul are a sequence of independent inner products

•
$$XW_{ab} = \sum_{h} X_{ah} W_{hb} = \left\langle X_a, W_b^T \right\rangle$$

Quantize each column of W independently

Matrix Multiplication - Vectorwise

$$\operatorname{Out}_{\operatorname{I32}_{11}} = \left\langle X_{\operatorname{I8}_1}, W_{\operatorname{I8}_1}^T \right\rangle \approx C_{X_1} C_{W_1} \left(X_{\operatorname{F16}_1} W_{\operatorname{F16}_1} \right)$$

Matrix Multiplication - Vectorwise $Out_{I32_{11}} = \left\langle X_{I8_1}, W_{I8_1}^T \right\rangle \approx C_{X_1} C_{W_1} \left(X_{F16_1} W_{F16_1} \right)$ $C_X C_W = \begin{pmatrix} 2 & 4 \\ 3 & 6 \\ 1 & 2 \end{pmatrix}$

• $C_{X_1}C_{W_1}$ is the topleft element in the outer product

Mixed-precision Decomposition

- Consistent outlier values in columns of X + Do separate matmul in fp16
- Luckily, they are sparse (only 0.1%). Is LLM.int8() actually int8 🤔?

LLM.int8 in Practice

- Load the weight from fp16/32 checkpoints
- Quantize it to int8 and send to GPUs
- When fp16 matmul is needed, weight matrix is dequantized to fp16

Evaluation

- Question: how well LLM.int8() performs as the model size scales.
 - ► Models: 125M 125B
- Two Settings: Language Modelling + End Tasks
- Language Modelling
 - Dataset: C4 corpus
 - Metric: Perplexity (robust, sensitive to quantization degradation)
- End Tasks
 - Dataset: EleutherAI language model evaluation harness
 - Metric: Zero-shot Accuracy

Evaluation Results

Parameters	125M	1.3B	2.7 B	6.7B	13 B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax	87.76	16.55	15.11	14.59	19.08
Int8 zeropoint	56.66	16.24	14.76	13.49	13.94
Int8 absmax row-wise	30.93	17.08	15.24	14.13	16.49
Int8 absmax vectorwise	35.84	16.82	14.98	14.13	16.48
Int8 zeropoint vectorwise	25.72	15.94	14.36	13.38	13.47
Int8 absmax rowwise + decomp	30.76	16.19	14.65	13.25	12.46
Absmax LLM.int8() vectorwise + decomp	25.83	15.93	14.44	13.24	12.45
Zp LLM.int8() vectorwise + decomp	25.69	15.92	14.43	13.24	12.45

Table 1: C4 validation perplexities of quantization methods for differenttransformer sizes.

Evaluation Results

Parameters	125M	1.3B	2.7B	6.7B	13B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax	87.76	16.55	15.11	14.59	19.08
Int8 zeropoint	56.66	16.24	14.76	13.49	13.94
Int8 absmax row-wise	30.93	17.08	15.24	14.13	16.49
Int8 absmax vectorwise	35.84	16.82	14.98	14.13	16.48
Int8 zeropoint vectorwise	25.72	15.94	14.36	13.38	13.47
Int8 absmax rowwise decomp	30.76	16.19	14.65	13.25	12.46
Absmax LLM.int8() vectorwise decomp	25.83	15.93	14.44	13.24	12.45
Zp LLM.int8() vectorwise decomp	25.69	15.92	14.43	13.24	12.45

• Performance degrades as model scales + LLM.int8 has comparable perf

Evaluation Results

Parameters	125M	1.3B	2.7 B	6.7B	13 B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax	87.76	16.55	15.11	14.59	19.08
Int8 zeropoint	56.66	16.24	14.76	13.49	13.94
Int8 absmax row-wise	30.93	17.08	15.24	14.13	16.49
Int8 absmax vectorwise	35.84	16.82	14.98	14.13	16.48
Int8 zeropoint vectorwise	25.72	15.94	14.36	13.38	13.47
Int8 absmax rowwise + decomp	30.76	16.19	14.65	13.25	12.46
Absmax LLM.int8() vectorwise + decomp	25.83	15.93	14.44	13.24	12.45
Zp LLM.int8() vectorwise + decomp	25.69	15.92	14.43	13.24	12.45

• With decomposition, zeropoint is no longer advantageous

Outlier Features

• Given a hidden state $X \in R^{s \times h}$ where s is the sequence/token dimension and h the hidden/feature dimension, a **feature** is a particular dimension h_i .

Outlier Features

• Given a hidden state $X \in R^{s \times h}$ where s is the sequence/token dimension and h the hidden/feature dimension, a **feature** is a particular dimension h_i .

How to determine if a feature is an outlier?

Outlier Features

- 4 Projection layers in Attention + Expansion layer in MLP
- Outliers
 - Treat features ≥ 6 as outliers \Rightarrow no more perplexity degradation
 - *Systematic* in large models: either in most layers or not at all
 - *Probabilistic* in small models: sometimes in some layers
- Find thresholds to limit detection to a single outlier in the smallest model with 125M parameters

Outlier Features - Threshold

- The feature value is at least 6.0
- It occurs in the same h_i in at least 25% of layers
- It appears in at least 6% of the sequence dimensions

- Emergence⁴
 - Sudden increase of presence in feature (blue) and sequence dimensions (orange) as model size increases
- Systematic after phase shift
- Critical

⁴The following studies are done in a series of models up to 13B parameters.

- Emergence
 - Sudden increase of presence in feature (blue) and sequence dimensions (orange) as model size increases
 - Nothing sudden in terms of perplexity
- Systematic after phase shift
- Critical

• Emergence

- Sudden increase of presence in feature (blue) and sequence dimensions (orange) as model size increases
- Nothing sudden in terms of perplexity
- Median rapidly increases
- Systematic after phase shift
- Critical

- Emergence
- **Systematic** after phase shift
 - ► For a 6.7B transformer with a sequence length of 2048,
 - 150k outlier features per sequence
 - Concentrated in only 6 different hidden dimensions
- Critical

- Emergence
- Systematic after phase shift
- Critical
 - Even if there are only 7 outliers, after removing them,
 - the mean top-1 softmax probability is reduced from 40% to 20%
 - the perplexity increases by 600-1000%
 - ► Remove 7 random features,
 - the top-1 probability decreases only between 0.02-0.3%
 - the perplexity increases by 0.1%

Outlier Features in Practice

• Any problems in outlier detections? ••

Outlier Features in Practice

- Outlier features are contextdependent⁵
 - Different outliers can show at different positions for different input
- In practice, outlier detection works on weight matrix instead⁶

⁵The author uses this word in his blog: https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/

 $^{^6} See \ their \ code \ here: \ https://github.com/bitsandbytes-foundation/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/utils.py \#L8-L103bproduction/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/utils.py \#L8-L103bproduction/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/blob/8b6fe9eef1a2f93af701e020bproduction/blob/8b6fe9eef1a2f9af7bfroduction/blob/8b6fe9eef1a2f9af7bfroduction/blob/8b6fe9eef1a2f9af7bfroduction/blob/8b6fe9eef1a2f9af7bfroduction/blob/8b6fe9eef1a2f9af7bfroduction/blob/8b6fe9eef1a2f9af7bfroduction/blob/8b6fe9eef1a2f9af7bfrod$

Discussions

- Limitations
 - ► Focus on int8 only (no fp8)
 - Only study models up to 175B params
- Int8 training and finetuning performance are not ideal

- Small-scale language models is close to baseline performance
- Performance degrades when int8 is used in attention projection layers even with decomposition

Is 8-bit						
Params	MLP	Out Proj	Attn	Decomp	PPL	
209M		-		0% -	16.74	
209M	\checkmark			0%	16.77	
209M	\checkmark	√		0%	16.83	
209M	\checkmark	√		2%	16.78	
209M	\checkmark	✓		5%	16.77	
209M	\checkmark	√		10%	16.80	
209M	\checkmark	✓	✓	2%	24.33	
209M	1	✓	1	5%	20.00	
209M	\checkmark	√	1	10%	19.00	
1.1B				0%	9.99	
1.1B	1			0%	9.93	
1.1B	\checkmark	✓		0%	10.52	
1.1B	1	1		1%	10.41	

Discussions - Speedup

GPT-3 Size	Small	Medium	Large	XL	2.7B	6.7B	13B	175 B
Model dimension	768	1024	1536	2048	2560	4096	5140	12288
FP16-bit baseline	1.00x	1.00x	1.00x	1.00x	1.00x	1.00x	1.00x	1.00x
Int8 no overhead	0.99x	1.08x	1.43x	1.61x	1.63x	1.67x	2.13x	2.29x
Vectorwise	0.43x	0.49x	0.74x	0.91x	0.94x	1.18x	1.59x	2.00x
LLM.int8() vectorwise decomp	0.14x	0.20x	0.36x	0.51x	0.64x	0.86x	1.22x	1.81x

- Ideal Speedup: the 8-bit without overhead assumes no quantization or dequantization is performed.
- Speed up only for models of large sizes. Why?

Thank you