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Layers
• MLP¹

‣ Expansion Layer
‣ Contraction Layer

• Attention Block
• Transformer Block

¹Figure adapted from slides by Zsolt Kira: https://faculty.cc.gatech.edu/~zk15/teaching/AY2024_cs7643_spring/assets/L4_GradientDescent_NNs.pdf
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Layers
• MLP
• Attention Block

‣ 4 Projection (Linear) Layers
‣ Key, Value, Query, Output

• Transformer Block
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Layers
• MLP
• Attention Block
• Transformer Block

‣ Attention Block
‣ MLP

Transformer Block

Attention Block

MLP
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Scenarios
• Training

‣ Forward Pass (value) + Backward Pass (gradient)
‣ Forward Pass results need to be stored in memory

• Finetune
‣ Similar to training, but sometimes with most of the weights freezed

• Inference
‣ Forward Pass only
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Scenarios
• Training
• Finetune
• Inference
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Motivation
• So, what’s the problem with the inference?

‣ Model is large: OPT-175B/BLOOM
‣ Weights need to be loaded into GPU memory
‣ 175B parameters (16 bit) -> 8x A100 (80G) -> 💰150000+
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Motivation
• So, what’s the problem with the inference?

‣ Model is large: OPT-175B/BLOOM
‣ Weights need to be loaded into GPU memory
‣ 175B parameters (16 bit) -> 8x A100 (80G) -> 💰150000+

• Solution: load “less” weights -> Quantization
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Previous Attempts
• Degrade performance
• Require further tuning
• Only been studied for models with less than 350M parameters

9 / 55



Previous Attempts
• Degrade performance
• Require further tuning
• Only been studied for models with less than 350M parameters

So, how to do degradation-free quantization up to billions of

parameters?
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Quantization
• Quantize fp16 matrices to int8 matrices
• Support matrix multiplication
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Absmax
• Absolute Maximum Quantization
• Scale input into [−127, 127] ranges

𝑿𝑖8 =
⌊
⌊
⌊ 127 ⋅ 𝑿𝑓16

max𝑖𝑗(|𝑿𝑖𝑗
𝑓16|)⌉

⌉
⌉ = ⌊𝑠𝑥𝑓16

𝑿𝑓16⌉
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Absmax
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min max
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min max
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Zeropoint
• Absmax is bad when the data is asymmetric.
• Shift the input into the range [−127, 127] by scaling with the

normalized dynamic range 𝑛𝑑𝑥 and shifting by the zeropoint 𝑧𝑝𝑥

𝑛𝑑𝑥𝑓16
= 2 ⋅ 127

max𝑖𝑗(𝑿𝑖𝑗
𝑓16) − min𝑖𝑗(𝑿𝑖𝑗

𝑓16)

𝑧𝑝𝑥𝑖16
= ⌊𝑋𝑓16 ⋅ min

𝑖𝑗
(𝑿𝑖𝑗

𝑓16)⌉

𝑋𝑖8 = ⌊𝑛𝑑𝑥𝑓16
𝑋𝑓16⌉
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Zeropoint
• However, the formula in the paper is wrong.²

²Their code for calculating zeropoint is also wrong, but in a different way: see e1f515. A few hours after making the slides, the wrong test was removed from the main
branch.
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https://github.com/bitsandbytes-foundation/bitsandbytes/blob/e1f515cd9da400b666df4cfb4da605abffdfb755/tests/test_functional.py#L1053


Zeropoint
• However, the formula in the paper is wrong.
• Let’s recall our goal:

0 maxmin

min max
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Zeropoint

𝑛𝑑𝑥𝑓16
⋅ min

𝑖𝑗
(𝑿𝑖𝑗

𝑓16) + 𝑧𝑝𝑥𝑖16
= −127

𝑛𝑑𝑥𝑓16
⋅ max

𝑖𝑗
(𝑿𝑖𝑗

𝑓16) + 𝑧𝑝𝑥𝑖16
= 127

Solving the above equations gives us

𝑛𝑑𝑥𝑓16
= 2 ⋅ 127

max𝑖𝑗(𝑿𝑖𝑗
𝑓16) − min𝑖𝑗(𝑿𝑖𝑗

𝑓16)

𝑧𝑝𝑥𝑖16
= −⌊𝑛𝑑𝑥𝑓16

⋅ min
𝑖𝑗

(𝑿𝑖𝑗
𝑓16)⌉ − 127
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Matrix Multiplication - Naive
Given input 𝑿𝑓16 ∈ 𝑅𝑠×ℎ and weights 𝑾𝑓16 ∈ 𝑅ℎ×𝑜 with sequence
dimension s, feature dimension h, and output dimension o,

𝑿𝑓16𝑾𝑓16 ≈ 1
𝑠𝑥𝑓16

𝑠𝑤𝑓16

⋅ 𝑿𝑖8𝑾𝑖8 (absmax)

𝑿𝑓16𝑾𝑓16 ≈ 1
𝑛𝑑𝑥𝑓16

𝑛𝑑𝑤𝑓16

⋅ (𝑿𝑖8 − 𝑧𝑝𝑥𝑖16
) ⋅ (𝑾𝑖8 − 𝑧𝑝𝑤𝑖16

) (zp)

• zeropoint is not used due to the need to add 𝑧𝑝 to quantized values³

³some GPUs/TPUs don’t support this
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Matrix Multiplication - Naive

𝑿𝑓16 = 𝑾𝑓16 = ( 1
−2

2
1) →→→→→→→→→→→→→→→→→→→

absmax quantization
( 64

−127
127
64 )
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Matrix Multiplication - Naive

𝑿𝑓16 = 𝑾𝑓16 = ( 1
−2

2
1) →→→→→→→→→→→→→→→→→→→

absmax quantization
( 64

−127
127
64 )

𝑿𝑖8𝑾𝑖8 = (−12033
−16256

16256
−12033) →→→→→→→→→→→→→→

dequantization
(−2.98

−4.03
4.03

−2.98)

𝑿𝑓16𝑾𝑓16 = (−3
−4

4
−3)
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Matrix Multiplication - Naive
Let’s consider a different input matrix

𝑿𝑓16 = (3
1

508
1 )
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Matrix Multiplication - Naive
Let’s consider a different input matrix

𝑿𝑓16 = (3
1

508
1 )

After quantization, we have

𝑿𝑓16 = (1
0

127
0 )
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Matrix Multiplication - Rowwise
• Quantize each row of 𝑿𝑓16 independently
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Matrix Multiplication - Rowwise
• Quantize each row of 𝑿𝑓16 independently

𝑿𝑓16 = (3
1

508
1 ) →→→→→→→→→→→→→→→→→→→→

rowwise quantization
( 1

127
127
127), 𝑆𝑥𝑓16

= (0.25
127)

𝑾𝑓16 = (1
2) →→→→→→→→→→→→→→→→→→→

absmax quantization
( 64

127), 𝑆𝑤𝑓16
= 63.5
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Matrix Multiplication - Rowwise
• Quantize each row of 𝑿𝑓16 independently

𝑿𝑓16 = (3
1

508
1 ) →→→→→→→→→→→→→→→→→→→→

rowwise quantization
( 1

127
127
127), 𝑆𝑥𝑓16

= (0.25
127)

𝑾𝑓16 = (1
2) →→→→→→→→→→→→→→→→→→→

absmax quantization
( 64

127), 𝑆𝑤𝑓16
= 63.5

𝑿𝑓16𝑾𝑓16 = (1019
3 )  and 𝑿𝑖8𝑾𝑖8 = (16193

24257) →→→→→→→→→→→→→→→→→→→→
dequantization

div by 𝑆𝑥𝑓16
×𝑆𝑤𝑓16

(1020.03
3.01 )
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Matrix Multiplication - Rowwise
Let’s consider a different weight matrix

𝑾𝑓16 = (3
1

508
1 )
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Matrix Multiplication - Rowwise
Let’s consider a different weight matrix

𝑾𝑓16 = (3
1

508
1 )

After quantization, we have

(1
0

127
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Matrix Multiplication - Vectorwise
Observations: matmul are a sequence of independent inner products
• 𝑋𝑊𝑎𝑏 = ∑ℎ 𝑋𝑎ℎ𝑊ℎ𝑏 = ⟨𝑋𝑎, 𝑊𝑇

𝑏 ⟩
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Matrix Multiplication - Vectorwise
Observations: matmul are a sequence of independent inner products
• 𝑋𝑊𝑎𝑏 = ∑ℎ 𝑋𝑎ℎ𝑊ℎ𝑏 = ⟨𝑋𝑎, 𝑊𝑇

𝑏 ⟩

Quantize each column of 𝑾  independently
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Matrix Multiplication - Vectorwise

OutI3211
= ⟨𝑋I81

, 𝑊𝑇
I81

⟩ ≈ 𝐶𝑋1
𝐶𝑊1

(𝑋F161
𝑊F161

)
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Matrix Multiplication - Vectorwise

OutI3211
= ⟨𝑋I81

, 𝑊𝑇
I81

⟩ ≈ 𝐶𝑋1
𝐶𝑊1

(𝑋F161
𝑊F161

)

𝐶𝑋𝐶𝑊 =
(
((
(2

3
1

4
6
2)
))
)

• 𝐶𝑋1
𝐶𝑊1

 is the topleft element in the outer product
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Mixed-precision Decomposition

• Consistent outlier values in columns of 𝑋 + Do separate matmul in fp16
• Luckily, they are sparse (only 0.1%). Is LLM.int8() actually int8 🤔?
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LLM.int8 in Practice
• Load the weight from fp16/32 checkpoints
• Quantize it to int8 and send to GPUs
• When fp16 matmul is needed, weight matrix is dequantized to fp16
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Evaluation
• Question: how well LLM.int8() performs as the model size scales.

‣ Models: 125M - 125B
• Two Settings: Language Modelling + End Tasks
• Language Modelling

‣ Dataset: C4 corpus
‣ Metric: Perplexity (robust, sensitive to quantization degradation)

• End Tasks
‣ Dataset: EleutherAI language model evaluation harness
‣ Metric: Zero-shot Accuracy
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Evaluation Results

Parameters 125M 1.3B 2.7B 6.7B 13B
32-bit Float 25.65 15.91 14.43 13.30 12.45
Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 16.24 14.76 13.49 13.94
Int8 absmax row-wise 30.93 17.08 15.24 14.13 16.49
Int8 absmax vectorwise 35.84 16.82 14.98 14.13 16.48
Int8 zeropoint vectorwise 25.72 15.94 14.36 13.38 13.47
Int8 absmax rowwise + decomp 30.76 16.19 14.65 13.25 12.46
Absmax LLM.int8() vectorwise + decomp 25.83 15.93 14.44 13.24 12.45
Zp LLM.int8() vectorwise + decomp 25.69 15.92 14.43 13.24 12.45

Table 1: C4 validation perplexities of quantization methods for different
transformer sizes.
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Evaluation Results

Parameters 125M 1.3B 2.7B 6.7B 13B
32-bit Float 25.65 15.91 14.43 13.30 12.45
Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 16.24 14.76 13.49 13.94
Int8 absmax row-wise 30.93 17.08 15.24 14.13 16.49
Int8 absmax vectorwise 35.84 16.82 14.98 14.13 16.48
Int8 zeropoint vectorwise 25.72 15.94 14.36 13.38 13.47
Int8 absmax rowwise decomp 30.76 16.19 14.65 13.25 12.46
Absmax LLM.int8() vectorwise decomp 25.83 15.93 14.44 13.24 12.45
Zp LLM.int8() vectorwise decomp 25.69 15.92 14.43 13.24 12.45

• Performance degrades as model scales + LLM.int8 has comparable perf
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Evaluation Results

Parameters 125M 1.3B 2.7B 6.7B 13B
32-bit Float 25.65 15.91 14.43 13.30 12.45
Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 16.24 14.76 13.49 13.94
Int8 absmax row-wise 30.93 17.08 15.24 14.13 16.49
Int8 absmax vectorwise 35.84 16.82 14.98 14.13 16.48
Int8 zeropoint vectorwise 25.72 15.94 14.36 13.38 13.47
Int8 absmax rowwise + decomp 30.76 16.19 14.65 13.25 12.46
Absmax LLM.int8() vectorwise + decomp 25.83 15.93 14.44 13.24 12.45
Zp LLM.int8() vectorwise + decomp 25.69 15.92 14.43 13.24 12.45

• With decomposition, zeropoint is no longer advantageous
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Outlier Features
• Given a hidden state 𝑋 ∈ 𝑅𝑠×ℎ where s is the sequence/token

dimension and h the hidden/feature dimension, a feature is a particular
dimension ℎ𝑖.
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Outlier Features
• Given a hidden state 𝑋 ∈ 𝑅𝑠×ℎ where s is the sequence/token

dimension and h the hidden/feature dimension, a feature is a particular
dimension ℎ𝑖.

How to determine if a feature is an outlier?
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Outlier Features
• 4 Projection layers in Attention + Expansion layer in MLP

• Outliers
‣ Treat features ≥ 6 as outliers ⇒ no more perplexity degradation
‣ Systematic in large models: either in most layers or not at all
‣ Probabilistic in small models: sometimes in some layers

• Find thresholds to limit detection to a single outlier in the smallest
model with 125M parameters
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Outlier Features - Threshold
• The feature value is at least 6.0

• It occurs in the same ℎ𝑖 in at least 25% of layers

• It appears in at least 6% of the sequence dimensions
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Understanding Outlier Features
• Emergence⁴

‣ Sudden increase of presence in
feature (blue) and sequence
dimensions (orange) as model
size increases

• Systematic after phase shift
• Critical

⁴The following studies are done in a series of models up to 13B parameters.
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Understanding Outlier Features
• Emergence

‣ Sudden increase of presence in
feature (blue) and sequence
dimensions (orange) as model
size increases

‣ Nothing sudden in terms of
perplexity

• Systematic after phase shift
• Critical
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Understanding Outlier Features
• Emergence

‣ Sudden increase of presence in
feature (blue) and sequence
dimensions (orange) as model
size increases

‣ Nothing sudden in terms of
perplexity

‣ Median rapidly increases
• Systematic after phase shift
• Critical
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Understanding Outlier Features
• Emergence
• Systematic after phase shift

‣ For a 6.7B transformer with a sequence length of 2048,
– 150k outlier features per sequence
– Concentrated in only 6 different hidden dimensions

• Critical
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Understanding Outlier Features
• Emergence
• Systematic after phase shift
• Critical

‣ Even if there are only 7 outliers, after removing them,
– the mean top-1 softmax probability is reduced from 40% to 20%
– the perplexity increases by 600-1000%

‣ Remove 7 random features,
– the top-1 probability decreases only between 0.02-0.3%
– the perplexity increases by 0.1%
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Outlier Features in Practice
• Any problems in outlier detections? 👀
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Outlier Features in Practice
• Outlier features are context-

dependent⁵
‣ Different outliers can show at

different positions for different
input

• In practice, outlier detection
works on weight matrix instead⁶

⁵The author uses this word in his blog: https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/

⁶See their code here: https://github.com/bitsandbytes-foundation/bitsandbytes/blob/8b6fe9eef1a2f93af701e020b9a757e43b18a42f/bitsandbytes/utils.py#L8-L103
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Discussions
• Limitations

‣ Focus on int8 only (no fp8)
‣ Only study models up to 175B params

• Int8 training and finetuning performance are not ideal
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• Small-scale language
models is close to
baseline performance

• Performance
degrades when int8 is
used in attention
projection layers
even with
decomposition

Is 8-bit
Params MLP Out Proj Attn Decomp PPL

209M 0% 16.74
209M ✓ 0% 16.77
209M ✓ ✓ 0% 16.83
209M ✓ ✓ 2% 16.78
209M ✓ ✓ 5% 16.77
209M ✓ ✓ 10% 16.80
209M ✓ ✓ ✓ 2% 24.33
209M ✓ ✓ ✓ 5% 20.00
209M ✓ ✓ ✓ 10% 19.00
1.1B 0% 9.99
1.1B ✓ 0% 9.93
1.1B ✓ ✓ 0% 10.52
1.1B ✓ ✓ 1% 10.41
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Discussions - Speedup
GPT-3 Size Small Medium Large XL 2.7B 6.7B 13B 175B

Model dimension 768 1024 1536 2048 2560 4096 5140 12288
FP16-bit baseline 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Int8 no overhead 0.99x 1.08x 1.43x 1.61x 1.63x 1.67x 2.13x 2.29x

Vectorwise 0.43x 0.49x 0.74x 0.91x 0.94x 1.18x 1.59x 2.00x
LLM.int8() vectorwise decomp 0.14x 0.20x 0.36x 0.51x 0.64x 0.86x 1.22x 1.81x

• Ideal Speedup: the 8-bit without overhead assumes no quantization or
dequantization is performed.

• Speed up only for models of large sizes. Why?
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Thank you
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