
Deletable Learned Bloom Filter

1 Abstract
The Bloom Filter is a space-efficient probabilistic data structure widely used for approximate
membership queries. More recently, the Learned Bloom Filter (LBF) has been introduced to improve
performance by leveraging models trained on the data. However, both traditional Bloom Filters and
LBFs lack native support for element deletion - a critical limitation for applications such as spam
filtering and IP routing.

This study addresses this gap by extending the LBF and Sandwiched Learned Bloom Filter (SLBF) to
support deletions while maintaining low false positive rates (FPR). We propose two primary designs:
(1) an SLBF with two Counting Bloom Filters (CBFs) that enables deletion by replacing Standard Bloom
Filters (SBFs) with CBFs, and (2) an LBF with 3 SBFs that guarantees deletion by explicitly tracking
removed elements, introducing a controlled false negative rate (FNR) to optimize for FPR.

We derive analytical expressions for FPR, deletability, and FNR for each design and validate our
approach through simulation-based evaluation. Results show that the SLBF with 2 CBFs achieves the
lowest FPR, while the LBF with 3 SBFs provides perfect deletability at the cost of slightly increased
FNR. These findings underscore a fundamental trade-off among FPR, FNR, and deletability, and offer
new strategies for enabling deletion in LBF variants.

2 Introduction
A Bloom Filter is a space-efficient probabilistic data structure used to test whether an element is a
member of a set. It provides a compact representation and fast approximate membership queries,
making it ideal for scenarios where minimizing memory usage is important and a small false positive
rate is acceptable. The Standard Bloom Filter (SBF) [1] is the original design proposed by Bloom. In a
SBF, for a set 𝑆 of size 𝑛, 𝑘 hash functions are used to map each element 𝑥 ∈ 𝑆 to 𝑘 positions in an
𝑚-bit array, setting each of those positions to 1. To perform a membership query, the input is hashed
using the same 𝑘 functions, and the filter returns true if all the corresponding bits are set to 1.

2.1 Motivation
Despite its widespread adoption in domains like IP lookup [2] and CDNs [3], the SBF suffers from a
key limitation: it lacks support for deletion.

Deletion is a critical feature in numerous real-world scenarios. For example, Bloom filters are often
used to maintain blacklists, such as those for spam email addresses [4]. These lists must be regularly
updated to reflect changes in threat intelligence, necessitating the ability to remove outdated entries. In
networking, Bloom filters support Longest Prefix Matching for IP routing [2], where prefix sets evolve
dynamically. Without deletion, outdated prefixes remain in the filter, undermining routing accuracy.

More broadly, deletable filters are valuable for thinning out stale elements, reducing false positives,
and reclaiming space for new insertions. All of these are essential for maintaining performance in
dynamic systems.

2.2 Counting Bloom Filter
The Counting Bloom Filter (CBF) [5] extends the SBF to support deletions by replacing each bit in the
bit array with a counter. It modifies the core operations of SBF as follows:
• Insertion: Instead of setting bits to 1, it increments the corresponding counters by 1.
• Deletion: Deletion is performed by decrementing the same counters by 1.
• Query: To check for membership, it verifies whether all corresponding counters are at least 1. If so,

it returns true; otherwise, false.

1

This counter-based approach enables efficient and safe element removal while preserving the benefits
and operations of SBF.

2.3 Learned Bloom Filter
In recent years, Kraska et al. [6] introduced the Learned Bloom Filter (LBF), a Bloom Filter that
incorporates machine learning to aid the traditional Bloom filters. The core idea is to use a learned
model as a pre-filter that assigns each query 𝑥 a score 𝑠(𝑥), interpreted as the probability that 𝑥 ∈
𝑆. If the score is high, the LBF returns true directly; otherwise, the query is passed to a backup SBF
to guarantee zero false negatives. This architecture is illustrated in Figure 1a. By leveraging patterns
in data distributions, the LBF can significantly reduce the FPR while maintaining the same memory
footprint as a traditional Bloom filter.

Input (x)

s(x) > t

Learned Model

f
1

Bloom filter

PositiveNegative

Positive

s(x) ≤ t

(a) The original Learned
Bloom Filter.

f
0

Positive

Negative
Bloom filter

Input (x)

s(x) > t
Learned Model

f
1

Bloom filter

PositiveNegative

Positive

s(x) ≤ t

(b) The Sandwiched
Learned Bloom Filter.

Input (x)

Learned Model

f
1

Bloom filter

PositiveNegative

t
0
=0≤ s(x) <t

1

f
k

Bloom filter

PositiveNegative

t
k-1

 ≤ s(x) ≤ t
k
=1

f
2

PositiveNegative

Bloom filter

t
1
≤ s(x) <t

2

(c) The Partitioned Learned Bloom Filter.
Figure 1: Different variants of Learned Bloom Filter. Adapted from Figure 1 of [7].

Mitzenmacher [8] introduces the Sandwiched Learned Bloom Filter (SLBF) to further reduce the FPR
by placing a SBF before the learned model, as shown in Figure 1b. This initial SBF allows only positive
queries to reach the learned model while immediately rejecting queries that are not in the set. This
design is a strict generalization of the LBF as when the initial filter is empty, the SLBF behaves exactly
like an LBF.

The Partitioned Learned Bloom Filter (PLBF) [7] enhances LBF performance by partitioning the score
range 𝑠(𝑥) into multiple regions based on optimized thresholds and FPRs. A separate SBF is constructed
for each region. This approach optimizes memory usage by allocating more bits to score regions with
higher densities of both keys and non-keys, thereby improving overall FPR.

2.4 Deletable Learned Bloom Filter
Zeng et al. [9] investigate how to extend PLBF with deletion support and propose a Two-layer Parti
tioned and Deletable Deep Bloom Filter (PDDBF). Their approach replaces the SBFs in the original
PLBF with CBFs and introduces a hash table to handle elements with scores in the range [𝑡𝑑, 1), where
𝑡𝑑 is a threshold chosen to split the score space. Inputs with 0 ≤ 𝑠(𝑥) < 𝑡𝑑 are processed using the
standard PLBF mechanism, where deletion is supported via the CBFs. For inputs where 𝑡𝑑 ≤ 𝑠(𝑥) <
1, the hash table stores keys that have been deleted. This hybrid design is illustrated in Figure 2.

Figure 2: The PDDBF. Adapted from Figure 3 of [9]. Details on data partitioning and model training from the
original work are omitted as they are not relevant to our context. The positive component refers to the hash

table used for storing deleted keys in the range 𝑡𝑑 ≤ 𝑠(𝑥) < 1.

2

However, they do not detail how the threshold 𝑡 is chosen and simply rephrases the original PLBF
optimization problem. Also, they failed to effectively address why the hash table is needed and why
not use CBF all the time.

2.5 Our Focus and Approach
In this project, we focus on extending the LBF and the SLBF to support deletions. We select LBF
and SLBF due to the limited research on enabling deletion in these variants. Although the PLBF can
achieve lower false positive rates with the same memory budget, its construction is significantly more
computationally expensive. Even with recent optimizations (e.g., [10]), PLBF construction still requires
quasi-linear time relative to dataset size. In contrast, LBF and SLBF offer faster and more practical
alternatives, particularly for large datasets. Furthermore, we do not focus exclusively on SLBF because,
as shown in Section 5.2 of [8], constructing an initial filter is not always optimal. This depends on
parameters such as bits per item and the false positive and false negative rates of the learned model.

We investigate multiple approaches for enabling deletion using CBF, and evaluate their FPR and
deletability. Furthermore, we examine how introducing a controlled and provably bounded false
negative rate (FNR) can offer an FPR tradeoff, and discuss scenarios where such a tradeoff may be
acceptable or even desirable in practical applications.

3 Technical details

3.1 Definition
Following [8], we define several commonly used notations in this section. Let 𝐾 denote the set of keys
encoded by the Bloom Filter, and 𝑚 = |𝐾|. Let 𝑈 denote the set of all possible queries. For each Bloom
Filter variant, we assume support for the following operations:
• 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓, 𝑥): Inserts element 𝑥 into Bloom Filter 𝑓 , using 𝑓 ’s insertion method.
• 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) → {0, 1}: Queries element 𝑥 using Bloom Filter 𝑓 , following 𝑓 ’s query method.

Returns 1 if 𝑥 ∈ 𝑓 , and 0 otherwise.

For Bloom Filter variants that support deletion, the following operation is also assumed:
• 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓, 𝑥): Deletes element 𝑥 from Bloom Filter 𝑓 , following 𝑓 ’s deletion method.

We denote the learned model associated with LBF variants as 𝑓𝐿. Its empirical false negative rate is
defined as

𝐹𝑛 = |{𝑥 | ∀𝑥 ∈ 𝑘, 𝑓𝐿(𝑥) ≤ 𝑡}|
𝑚

We denote the false positive rate as FPR(𝑓), where 𝑓 refers to either a Bloom Filter or a learned
model. For a deletable Bloom Filter 𝑓 , we denote its deletability as 𝐷(𝑓), defined as the probability
that 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) = 0 after performing 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓, 𝑥), where 𝑥 ∈ 𝐾 .

3.2 SLBF with 2 CBFs
We start by exploring how to enhance SLBF. Borrowed the idea from adding deletion to PLBF, we start
by replacing SBF in SLBF with CBF. Figure 3 illustrates the new design.

3

f0

Positive

Negative
CBF

Input (x)

f (x) > t
Learned Model

f1

PositiveNegative

Positive

f (x) ≤ tL L

CBF

Figure 3: The SLBF with SBF replaced by CBF.

Definition 3.1 SLBF with 2 CBFs

The SLBF 𝑓 with 2 CBFs supports three operations, defined as follows
• 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓, 𝑥): Similar to the SLBF’s insertion, but using CBF’s 𝐈𝐧𝐬𝐞𝐫𝐭 to replace SBF’s 𝐈𝐧𝐬𝐞𝐫𝐭.
• 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) → {0, 1}: Similar to the SLBF’s insertion, but using CBF’s 𝐐𝐮𝐞𝐫𝐲 to replace

SBF’s 𝐐𝐮𝐞𝐫𝐲. So, the return is 1 only when

𝐐𝐮𝐞𝐫𝐲(𝑓0, 𝑥) ∧ (𝑓𝐿(𝑥) > 𝑡 ∨ 𝐐𝐮𝐞𝐫𝐲(𝑓1, 𝑥))

• 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓, 𝑥): Run 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓0, 𝑥). If 𝑓𝐿(𝑥) ≤ 𝑡, additionally run 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓1, 𝑥).

We now analyze the FPR and deletability of this design. Let the total memory budget be 𝑚𝑏 bits, with
𝑓0 allocated 𝑏0𝑚 bits and 𝑓1 allocated 𝑏1𝑚 bits, such that 𝑏0 + 𝑏1 = 𝑏.

FPR. For the FPR, we know that for 𝑥 ∉ 𝐾 , the probability that 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) = 1 is

FPR(𝑓) = FPR(𝑓0)(FPR(𝑓𝐿) + (1 − FPR(𝑓𝐿)) FPR(𝑓1)) (1)

Remark FPR of CBF

Before expanding Equation 1, we need to know the FPR of CBF. For a CBF with total memory 𝑧,
𝑐-bits for each cell, and 𝑘 hash functions that encodes 𝑦 elements, its FPR is

(1 − (1 − 1
𝑧/𝑐

)
𝑘𝑦

)
𝑘

≈ (1 − 𝑒
−𝑘𝑦
𝑧/𝑐)

𝑘

Optimize this with 𝑘 = 𝑧
𝑐𝑦 ln 2, we get

(1 − 𝑒
−𝑘𝑦
𝑧/𝑐)

𝑘
= 𝛼

𝑧
𝑐𝑦 where 𝛼 = (1

2
)

ln 2

As CBF 𝑓0 encodes 𝑚 elements and CBF 𝑓1 only encodes 𝐹𝑛𝑚 elements, we can expand Equation 1 as

𝛼
𝑏0
𝑐 (FPR(𝑓𝐿) + (1 − FPR(𝑓𝐿))𝛼

𝑏1
𝑐𝐹𝑛) (2)

Similar to [8], as 𝛼, FPR(𝑓𝐿), 𝐹𝑛, 𝑏 are constants, we can optimize for 𝑏0. The derivative of Equation 2
with respect to 𝑏0 is:

ln 𝑎
𝑐

𝛼
𝑏0
𝑐 [FPR(𝑓𝐿) + (1 − FPR(𝑓𝐿))𝛼

𝑏−𝑏0
𝑐𝐹𝑛 − 1

𝐹𝑛
(1 − FPR(𝑓𝐿))𝛼

𝑏−𝑏0
𝑐𝐹𝑛]

4

This equals 0 when:

FPR(𝑓𝐿) = (1 − FPR(𝑓𝐿))(1
𝐹𝑛

− 1)𝛼
𝑏−𝑏0
𝑐𝐹𝑛

This means the optimal 𝑏∗
1 is:

𝑏∗
1 = 𝐹𝑛𝑐 log𝑎

(
((
(FPR(𝑓𝐿)

(1 − FPR(𝑓𝐿))(1
𝐹𝑛

− 1))
))
)

Similar to Mitzenmacher’s result for SLBF with SBF [8], the optimal 𝑏∗
1 is independent of 𝑏 and the total

memory budget. In other words, the optimal number of bits for the backup filter is a fixed number of
bits. Also, when 𝑐 = 1, our result matches Mitzenmacher’s result, where the optimal 𝑏∗

1SBF
 for SBF is

𝑏∗
1SBF

= 𝐹𝑛 log𝑎

(
((
(FPR(𝑓𝐿)

(1 − FPR(𝑓𝐿))(1
𝐹𝑛

− 1))
))
)

The increase of the optimal 𝑏∗
1 by a factor of 𝑐 is expected, as the SBF result derived by [8] can be

interpreted to mean that the optimal backup filter 𝑓1 requires 𝑏∗
1SBF

 bits (i.e., counters of 1 bit each).
Since the number of bits required for 𝑓1 is independent of the total memory budget, the optimal 𝑏∗

1
becomes 𝑐 × 𝑏∗

1SBF
 when each counter must be 𝑐 bits.

As a result, when 𝑏 is large enough (i.e., 𝑏 > 𝑏∗
1), the FPR(𝑓) can be written as:

FPR(𝑓) = 𝛼
𝑏∗
0
𝑐

FPR(𝑓𝐿)
1 − 𝐹𝑛

 where 𝑏∗
0 = 𝑏 − 𝑏∗

1

Deletability. For deletability, we want to know for a random element 𝑥 ∈ 𝐾 , after deletion, the
probability that 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) = 0.

Remark Deletability of CBF

Consider a CBF 𝑓𝑐 with total memory 𝑧, 𝑐-bits for each cell, and 𝑘 hash functions that encodes 𝑦
elements. For an 𝑥 encoded in CBF, the probability that 𝐐𝐮𝐞𝐫𝐲(𝑓𝑐, 𝑥) = 0 after deleting it is

1 − (1 − (1 − 1
𝑧/𝑐

)
𝑘(𝑦−1)

)
𝑘

≈ 1 − (1 − 𝑒−𝑘(𝑦−1)
𝑧/𝑐)

𝑘

where

(1 − (1 − 1
𝑧/𝑐

)
𝑘(𝑦−1)

)
𝑘

(3)

denotes the probability that all the 𝑘 cells used by 𝑥 are all incremented due to the insertion of
other keys. As a result, we can compute the probability that at least one of the 𝑘 cells used by
𝑥 remains not incremented by other insertions as 1 minus the Equation 3. This is precisely the
probability that 𝐐𝐮𝐞𝐫𝐲(𝑓𝑐, 𝑥) = 0, since after 𝑥 is deleted from the CBF, any such cell will return
to zero, thereby causing 𝐐𝐮𝐞𝐫𝐲(𝑓𝑐, 𝑥) to return 0.

According to the query definition, deletion is considered successful under the following conditions:
• 𝑥 is successfully removed from 𝑓0; or

5

• 𝑥 is not successfully removed from 𝑓0, but 𝑓𝐿(𝑥) ≤ 𝑡 and 𝑥 is successfully removed from 𝑓1.

Therefore, the probability that a random 𝑥 ∈ 𝐾 is successfully deleted is:

𝐷(𝑓) = 𝐷(𝑓0) + (1 − 𝐷(𝑓0)) ⋅ 𝐹𝑛 ⋅ 𝐷(𝑓1)

As CBF 𝑓0 encodes 𝑚 elements and CBF 𝑓1 only encodes 𝐹𝑛𝑚 elements, using the deletability formula
and 𝑘 = 𝑧

𝑐𝑦 ln 2 (optimized with respect to FPR(𝑓𝑐)), we can derive:

𝐷(𝑓0) = 1 − (1 − (1
2
)

𝑚−1
𝑚

)

𝑏0
𝑐 ln 2

𝐷(𝑓1) = 1 − (1 − (1
2
)

𝐹𝑛𝑚−1
𝐹𝑛𝑚

)

𝑏1
𝑐𝐹𝑛

ln 2

3.3 SLBF with 3 CBFs
After examining the two-CBF configurations, we now consider the case involving three CBFs in the
SLBF design, as illustrated in Figure 4. In this design, each CBF has memory budget 𝑏0𝑚, 𝑏1𝑚, 𝑏2𝑚
respectively and 𝑏0 + 𝑏1 + 𝑏2 = 𝑏. We tried to compute partial derivative in terms of any two of them.
However, the resulting transcendental equations prevent further optimization.

f0

Positive

Negative
CBF

Input (x)

f (x) > t
Learned Model

f1

PositiveNegative

f (x) ≤ t
CBF

f2

PositiveNegative

CBF

L L

Figure 4: The SLBF with 3 CBFs.

3.4 LBF with 2 CBFs

Input (x)

f (x) > t
Learned Model

f1

PositiveNegative

f (x) ≤ tL L

CBF
f2

PositiveNegative

CBF

Figure 5: The LBF with 2 CBFs.

Since Figure 4 is difficult to optimize, we consider a simplified variant illustrated in Figure 5. This
design incorporates two Bloom Filters: one for elements satisfying 𝑓𝐿(𝑥) ≤ 𝑡 and another for those
where 𝑓𝐿(𝑥) > 𝑡. While this structure resembles the PLBF with two regions, it is important to note that
we have not performed the optimization necessary to derive the optimal threshold and false positive
rates. As such, the design remains easy to construct.

6

Definition 3.2 LBF with 2 CBFs

The LBF 𝑓 with 2 CBFs supports three operations, defined as follows
• 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓, 𝑥): Run 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓1, 𝑥) when 𝑓𝐿(𝑥) ≤ 𝑡 else 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓2, 𝑥).
• 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) → {0, 1}: Run 𝐐𝐮𝐞𝐫𝐲(𝑓1, 𝑥) when 𝑓𝐿(𝑥) ≤ 𝑡 else 𝐐𝐮𝐞𝐫𝐲(𝑓2, 𝑥). So, the return

is 1 only when

(𝑓𝐿(𝑥) ≤ 𝑡 ∧ 𝐐𝐮𝐞𝐫𝐲(𝑓1, 𝑥)) ∨ (𝑓𝐿(𝑥) > 𝑡 ∧ 𝐐𝐮𝐞𝐫𝐲(𝑓2, 𝑥))

• 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓, 𝑥): Run 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓1, 𝑥) if 𝑓𝐿(𝑥) ≤ 𝑡 else 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓2, 𝑥).

This configuration can be interpreted in two ways:
• As an alternative design for scenarios where the memory budget 𝑏 is too small to allocate any

space for 𝑓0 in SLBF, making its inclusion infeasible; or
• As a modified version of the LBF, augmented with an additional CBF for the region where

𝑓𝐿(𝑥) > 𝑡. Here, we choose this version.

For FPR and deletability analysis, similar to before, suppose the total memory budget for these filters
is 𝑚𝑏 number of bits, and 𝑓1 has bits 𝑏1𝑚 and 𝑓2 has bits 𝑏2𝑚 where 𝑏1 + 𝑏2 = 𝑏.

FPR. By the definition of the query, for 𝑥 ∉ 𝐾 , the probability that 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) = 1 is:

FPR(𝑓) = FPR(𝑓𝐿) FPR(𝑓2) + (1 − FPR(𝑓𝐿)) FPR(𝑓1)

Since 𝑓1 encodes 𝐹𝑛𝑚 elements and 𝑓2 encodes (1 − 𝐹𝑛)𝑚 elements, the above equation can be
rewritten as:

FPR(𝑓𝐿)𝛼
𝑏2

𝑐(1−𝐹𝑛) + (1 − FPR(𝑓𝐿))𝛼
𝑏1

𝑐𝐹𝑛

Compute the derivative:

ln 𝑎
𝑐

[−FPR(𝑓𝐿)
1 − 𝐹𝑛

𝛼
𝑏−𝑏1

𝑐(1−𝐹𝑛) + 1 − FPR(𝑓𝐿)
𝐹𝑛

𝛼
𝑏1

𝑐𝐹𝑛]

This equals 0 when:

FPR(𝑓𝐿)
1 − 𝐹𝑛

𝛼
𝑏−𝑏1

𝑐(1−𝐹𝑛) = 1 − FPR(𝑓𝐿)
𝐹𝑛

𝛼
𝑏1

𝑐𝐹𝑛

Taking the logarithm of both sides and solving for 𝑏∗
1, we obtain:

𝑏∗
1 = 𝑏𝐹𝑛 − 𝑐𝐹𝑛(1 − 𝐹𝑛)

ln 𝑎
ln(

(1 − 𝐹𝑝)(1 − 𝐹𝑛)
𝐹𝑛𝐹𝑝

)

Consider an example where 𝐹𝑛 = 0.5, FPR(𝑓𝐿) = 0.01, 𝛼 = 0.6185, 𝑐 = 2, and 𝑏 = 20. Then, the
optimal 𝑏∗

1 and 𝑏∗
2 is

𝑏∗
1 = 14.782 and 𝑏∗

2 = 5.218

Thus, the FPR is

FPR(𝑓) ≈ 0.01 ∗ 0.0815 + 0.99 ∗ 0.000823 = 0.00163

As the SLBF is also possible to construct in this case, we can calculate its FPR:

𝑏∗
1 = 4.782 and 𝑏∗

0 = 15.217 and FPR is 0.000517

7

Since this structure is not particularly competitive when SLBF is feasible, and its effectiveness heavily
depends on FPR(𝑓𝐿) and other parameters, we do not consider it a strong alternative. Rather, we
propose it as a fallback option when SLBF construction is infeasible. Consequently, we do not derive the
corresponding deletability formula for this design and evaluate it in the evaluation section. However,
it should be easy to derive using the same principles outlined in Section 3.2.

3.5 LBF with 3 SBFs
Lastly, we explore an important trade-off between the FPR and the false negative rate (FNR). Until
now, all previously discussed designs maintain the invariant that FNR is zero. However, we argue that
this constraint is not always necessary, particularly if allowing a non-zero FNR enables guaranteed
deletions in LBF.

For example, consider a Bloom Filter used to store a list of spam email addresses. In this context, a
false negative, where a spam email bypasses the filter and reaches the user’s inbox, may be acceptable.
Moreover, consider the scenario where a user marks an email as spam using the Bloom Filter. It is
undesirable if that email can still appear in the inbox due to the Bloom Filter’s FPR. In such cases,
guaranteed deletion (i.e., deletability equal to 1) is beneficial.

Therefore, we explored what we can do to make guaranteed deletion and tradeoff some FNR with FPR,
as illustrated in Figure 6.

Figure 6: The SLBF with SBF replaced by CBF.

Definition 3.3 LBF with 3 SBFs

The LBF 𝑓 with 3 SBFs supports three operations, defined as follows
• 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓, 𝑥): Run 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓1, 𝑥) when 𝑓𝐿(𝑥) ≤ 𝑡.
• 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) → {0, 1}: the query method returns 1 iff

(𝑓𝐿(𝑥) ≤ 𝑡 ∧ ¬ 𝐐𝐮𝐞𝐫𝐲(𝑓𝐷2
, 𝑥) ∧ 𝐐𝐮𝐞𝐫𝐲(𝑓1, 𝑥)) ∨ (𝑓𝐿(𝑥) > 𝑡 ∧ ¬ 𝐐𝐮𝐞𝐫𝐲(𝑓𝐷1

, 𝑥))

• 𝐃𝐞𝐥𝐞𝐭𝐞(𝑓, 𝑥): Run 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓𝐷2
, 𝑥) if 𝑓𝐿(𝑥) ≤ 𝑡 else 𝐈𝐧𝐬𝐞𝐫𝐭(𝑓𝐷1

, 𝑥).

Intuitively, this design extends the LBF by augmenting it with two additional SBFs: one for managing
deleted elements 𝑥 such that 𝑓𝐿(𝑥) > 𝑡, and the other for those where 𝑓𝐿(𝑥) ≤ 𝑡. In essence, these two
SBFs store the keys deleted from the LBF, enabling approximate membership queries for the deleted
items.

For FPR, deletability, and FNR analysis, assume the total memory budget for the filters is 𝑚𝑏 bits. Let 𝑓1,
𝑓𝐷1

, and 𝑓𝐷2
 be allocated 𝑏1𝑚, 𝑏2𝑚, and 𝑏3𝑚 bits, respectively, where 𝑏1 + 𝑏2 + 𝑏3 = 𝑏. Additionally,

assume that 𝜆𝑚 random elements are subject to deletion.

8

FPR. By the definition of query, for 𝑥 ∉ 𝐾 , where 𝑥 was not previously deleted, the probability that
𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) = 1 is:

FPR(𝑓) = FPR(𝑓𝐿)(1 − FPR(𝑓𝐷1
)) + (1 − FPR(𝑓𝐿))(1 − FPR(𝑓𝐷2

))(FPR(𝑓1))

In other words, 𝑥 is misclassified only under the following conditions:
• The learned model misclassifies 𝑥, and the SBF 𝑓𝐷1

 fails to recognize it as deleted (i.e., 𝑓𝐷1
 does not

report 𝑥 as deleted, thereby allowing the learned model’s misclassification to propagate); or
• The learned model correctly classifies 𝑥, and 𝑓𝐷2

 also does not indicate deletion, but the backup SBF
𝑓1 misclassifies 𝑥.

Deletability. If an element 𝑥 ∈ 𝐾 was previously inserted and is later deleted, then by design it will
appear in either 𝑓𝐷1

 or 𝑓𝐷2
. Since the SBF has no false negatives, the probability that 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) =

1 is zero. This implies that deletion is guaranteed and the deletability is 1. Moreover, as elements are
deleted, the size of the complement of the set 𝐾 , namely, 𝑈 − 𝐾 , increases. This implies that the FPR
decreases as the number of deletions increases, because the number of false positive samples remains
unchanged (due to the guaranteed deletion), as illustrated by the following formula:

FPR(𝑓) = |{𝑥 | 𝑥 ∈ 𝑈 − 𝐾, 𝐐𝐮𝐞𝐫𝐲(𝑓, 𝑥) = 1}|
|𝑈 − 𝐾|

FNR. Guaranteed deletion comes at a cost. While the additional SBFs 𝑓𝐷1
 and 𝑓𝐷2

 enable guaranteed
deletions, they also introduce false negatives. For an element 𝑥 ∈ 𝐾 , the probability that it is misclas
sified as negative is given by:

FNR(𝑓) = (1 − 𝐹𝑛) ⋅ FPR(𝑓𝐷1
) + 𝐹𝑛 ⋅ FPR(𝑓𝐷2

)

This expression captures the FNR because positive items may only be misclassified as negatives under
the following conditions:
• The learned model classifies 𝑥 correctly, but 𝑓𝐷1

 incorrectly identifies it as deleted; or
• The learned model misclassifies 𝑥, and 𝑓𝐷2

 also incorrectly identifies it as deleted. In this case, if 𝑓𝐷2

were correct, the query would proceed to the backup SBF 𝑓1, which, since 𝑥 ∈ 𝐾 , would return 1.

Given the assumption that 𝜆𝑚 random elements in 𝐾 will be deleted, we note that 𝑓𝐷1
 encodes

𝜆𝑚(1 − 𝐹𝑛) elements, since (1 − 𝐹𝑛) fraction of 𝐾 is correctly classified as positive by the learned
model. Similarly, 𝑓𝐷2

 encodes 𝜆𝑚𝐹𝑛 elements, corresponding to the portion of 𝐾 misclassified as
negative.

Substituting these quantities into the earlier expression, the FNR can be rewritten as:

FNR(𝑓) = (1 − 𝐹𝑛) ⋅ 𝛼
𝑏2

𝜆(1−𝐹𝑛) + 𝐹𝑛 ⋅ 𝛼
𝑏3

𝜆𝐹𝑛

This formulation implies that the FNR of 𝑓 can be explicitly controlled through the FPR of 𝑓𝐷1
 and

𝑓𝐷2
.

4 Evaluation
We evaluate the SLBF with 2 CBFs (Definition 3.1) and LBF with 3 SBFs (Definition 3.3) in this section.

Experiment Setup. We adopt a simulation-based approach to conduct our experiments, avoiding the
complexity of training a neural network from scratch. Experimental results are drawn from Kraska et
al. [6], based on the Google Transparency Report dataset. The parameters used in our simulations are
summarized in Table 1.

9

Parameter Explanation Value

𝑛 Number of data to encode 1.7M

𝑚𝐿 Memory budget for the learned model 0.0259MB

FPR(𝑓𝐿) False positive rate of the learned model 0.5% and 0.1% (two configurations)

𝐹𝑛 Empirical false negative rate of the learned model 55% and 76% (two configurations)

𝑐 Number of bits for each counter 4 bits

𝜆 Percentage of elements to be deleted 10%

Table 1: Experimental result from [6].

We compare our two designs with each other and against a baseline single CBF design. For the LBF
with 3 SBFs, we employ the SLSQP optimization method from the scipy library to allocate bits across
the filters. We tried two objectives to minimize: 1) the sum of FPR and FNR and 2) the overall FPR.

Experiment Metrics. To evaluate the performance of our designs, we consider the following metrics:
• FPR: The false positive rate of our design.
• Deletability: The probability that an element can be deleted.
• FNR: The false negative rate of our design, specific to LBF with 3 SBFs.

We will examine how these metrics vary with respect to 𝑏, the number of bits per element. To control
𝑏, we will vary the total memory budget 𝑚 for our design.

4.1 Results

(a) FPR of different designs vs. bits per element. (b) Deletability of different designs vs. bits per element.
Figure 7: FPR and Deletability of different designs vs. bits per element. In the legend, the numbers in parentheses
represent the FPR(𝑓𝐿) and 𝐹𝑛, respectively. The LBF with 3 SBFs is optimized with respect to the sum of FNR
and FPR. The absence of some data points for SLBF reflects that, for certain 𝑏, SLBF construction is not feasible.

Figure 7a illustrates how the FPR varies as a function of 𝑏. First, it is evident that incorporating a
learned model enhances Bloom Filter performance. This is demonstrated by the substantially higher
FPR of the CBF-only model compared to the other designs, a result consistent with the findings
of Kraska et al. in [6]. Second, the FPR remains relatively stable across different configurations of
FPR(𝑓𝐿) and empirical 𝐹𝑛. For each design, the curves corresponding to the two configurations
nearly overlap, indicating the robustness of our designs with respect to variations in learned model
performance. Third, the SLBF with 2 CBFs and the LBF with 3 SBFs exhibit comparable FPR in the
range 𝑏 = 32 to 𝑏 = 9, likely due to effective optimization. The SLBF with 2 CBFs performs slightly
better in the lower range from 𝑏 = 9 to 𝑏 = 6.

Figure 7b illustrates the deletability performance across different designs. As expected, the LBF with
3 SBFs achieves the highest deletability, consistently maintaining a value of 1 due to its support for
guaranteed deletion. Following this, the CBF-only design demonstrates relatively high deletability,

10

while the SLBF with 2 CBFs shows the lowest. The high deletability of the CBF-only design can be
attributed to its use of the entire memory budget to construct a single filter. In contrast, the SLBF with
2 CBFs allocates its memory across 2 filters to optimize for FPR. In this configuration, only the initial
filter is responsible for handling deletions across all samples, while the backup filter contributes to
deletability only for specific elements 𝑥 such that 𝑓𝐿(𝑥) ≤ 𝑡. In summary, this comparison underscores
a key design trade-off: optimizing for FPR can come at the cost of reduced deletability.

(a) FNR of LBF with 3 SBFs versus bits per element. The
LBF with 3 SBFs is optimized with respect to the sum

of FNR and FPR.

(b) FNR of LBF with 3 SBFs versus bits per element.
The LBF with 3 SBFs is optimized with respect to the

FPR only.
Figure 8: FNR of LBF with 3 SBFs versus bits per element.

Figure 8 highlights the extent to which optimizing for FPR can significantly compromise the perfor
mance of FNR. As shown in Figure 8b, when the LBF with 3 SBFs is optimized solely for FPR, it can
achieve extremely low false positive rates for all 𝑏. However, this comes at a significant cost, as the filter
becomes nearly unusable from 𝑏 = 19 onward due to an FNR approaching 1. A closer examination
of the bit allocation reveals that under FPR-focused optimization, the configuration effectively degen
erates to a standard LBF, where the filters 𝑓𝐷1

 and 𝑓𝐷2
 receive minimal memory. This occurs because

the optimizer likely determines that the most effective way to achieve optimal FPR, given a limited
memory budget, is to allocate very little memory to 𝑓𝐷1

 and 𝑓𝐷2
. By doing so, these filters exhibit

extremely high FPR, which in turn leads to an extremely low FPR for the outer LBF.

Figure 9: FPR and FNR of LBF with 3 SBFs versus bits per element for different 𝜆. The LBF with 3 SBFs is
optimized with respect to the sum of FPR and FNR.

We also perform a sensitivity analysis to examine how varying 𝜆 impacts the FPR and FNR of the
LBF with 3 SBFs. The results, shown in Figure 9, reveal that for both metrics, higher values of 𝜆 cause
performance degradation to start at higher 𝑏 values. This is expected, as a larger 𝜆 requires more
memory for 𝑓𝐷1

 and 𝑓𝐷2
. As a result, its FPR and FNR begin to increase earlier as the available memory

11

budget decreases. Interestingly, for 𝜆 = 0.5, there is a sudden drop in FNR at 𝑏 = 1. This is likely due
to the limited memory budget at this point, prompting the optimizer to prioritize minimizing FPR over
FNR. Specifically, it allocates a minimal number of bits to 𝑓𝐷2

 to induce a high FPR for this filter, which,
in turn, results in a low FPR for 𝑓𝐿(𝑥) ≤ 𝑡. The remaining bits are shifted to 𝑓𝐷1

 to partially offset the
FNR penalty.

Overall, when memory is abundant, both the SLBF with 2 CBFs and the LBF with 3 SBFs are viable,
offering low FPR and, in the case of the LBF, low FNR. The LBF may be preferred when deletion
support is critical. In contrast, when memory is limited, but still sufficient to construct the SLBF with
2 CBFs, and deletion requirements are minimal, the SLBF offers a strong balance of performance and
deletability.

5 Related Work.
Adaptive Bloom Filter (Ada-BF). Similar to PLBF, Ada-BF [11] adopts the idea of partitioning
classifier score ranges to reduce the FPR. However, instead of assigning a separate SBF to each score
range, Ada-BF uses a single SBF and varies the number of hash functions per range. This design
achieves a lower FPR than LBF and SLBF while maintaining the same memory footprint. Our proposed
enhancements can also be applied to Ada-BF by replacing its SBF with a single CBF (like Definition
3.1) or incorporating a SBF (like Definition 3.3).

Deletable Bloom Filter (DIBF). To reduce the memory overhead introduced by CBF, DIBF introduces
an additional bitmap to the SBF that marks whether a range of bits has a collision. When deleting an
element, DIBF attempts to find one of the element’s hashed positions that has no collision; if none
exist, the deletion fails and the element remains in the filter, contributing to the FPR. While DIBF does
not account for the presence of a learned model, which makes it less suitable for our setting, it can still
be considered a memory-efficient alternative to CBF in our design.

Elastic Bloom Filter (EBF). Similar to DIBF, EBF [12] introduces an auxiliary structure to track
collisions within regions. However, instead of using a single bit to indicate whether a bit range has
a collision, EBF assigns a bucket to each bit in the SBF and stores a fingerprint of each input in the
bucket associated with the bit it maps to. This additional structure enables efficient deletion: removing
a fingerprint from a bucket and clearing the corresponding bit in the SBF if the bucket becomes empty
(similar to the collision-free case in DIBF). EBF also supports dynamic expansion, which is triggered
when inserting into a full bucket or when the number of set bits in the SBF exceeds a predefined
threshold. However, similar to DIBF, EBF’s deletion mechanism is not directly applicable to our setting.
Moreover, we do not consider it a suitable alternative to CBF due to the additional memory overhead
introduced by its bucket structure.

Adversary Resilient Bloom Filter. [13] analyzes the LBF under an adversarial model where the
adversary can control a fraction of the queries and even access the internal representation of the LBF,
with the goal of maximizing false positives. This security aspect of LBF, if ignored, can introduce
vulnerabilities. As noted by [14], adversaries can potentially exploit SBF by crafting malicious queries
to trigger denial-of-service attacks.

To address such threats, [13] proposes the Downtown Bodega Filter, a new construction based on a
modified SLBF, which offers provable security in the adversarial model assuming the existence of a
pseudo-random permutation. Their construction resembles our design with 2 CBFs (Definition 3.2). In
theory, our construction can be adapted to this threat model by incorporating two additional secret
keys for keyed pseudo-random permutation. This enables it to defend against query-only adversaries.

12

However, for our alternate design with 3 SBFs (Definition 3.3), the presence of false negatives makes
its security guarantees more subtle. Developing a formal security model that accounts for these
complexities is an open direction for future work.

Machine Unlearning. Machine unlearning tackles the challenge of selectively removing specific
data points from trained machine learning models. Exact unlearning methods, such as retraining from
scratch on the remaining data, offer complete data removal but are often computationally infeasible for
large datasets. Approximate unlearning methods aim to address this by modifying the model through
gradient-based techniques. For instance, Gradient Ascent (GA) [15] increases the loss for specific
samples, effectively suppressing the model’s ability to recall them. However, GA may unintentionally
degrade performance on data that should be retained. Gradient Difference [15] mitigates this by
combining GA and gradient descent, helping preserve performance on the retained data. Despite their
promise, these methods generally lack formal forgetting guarantees and instead rely on empirical
validation [16].

In our context, these unlearning techniques offer a potential avenue to directly modify the learned
model for cases where it produces false positives. This could reduce or even eliminate the need for
an additional Bloom Filter or lower the space required for such filters. However, the lack of formal
guarantees and the computational cost of unlearning must be carefully considered before adopting
this approach.

6 Discussion

6.1 Limitations
Memory Usage. The memory efficiency of all designs, except the final one, is suboptimal due to the
reliance on CBFs. This directly affects the FPR of the resulting designs. For example, achieving the
same FPR requires more memory in the SLBF with 2 CBFs (Definition 3.1) compared to the SLBF with
2 SBFs. This is primarily because the 𝑎𝑏0 term in the SBF case becomes 𝑎

𝑏0
𝑐 in the CBF case, reflecting

the increased memory demands of CBFs. As discussed in related work, replacing CBFs with DIBFs is a
promising alternative. However, this comes at the cost of making some elements non-deletable, which
may affect the overall FPR. Future work could explore how DIBFs influence both FPR and deletability.

Reinsertion. Reinsertion is as valuable as deletion in dynamic settings, where items may be deleted
and later reinserted. However, in the LBF with 3 SBFs (Definition 3.3), reinsertion of deleted items is
not supported. This limitation arises because the SBFs used to track deleted items do not themselves
support deletions. Future work could investigate strategies to enable reinsertion while maintaining
minimal memory overhead.

Limited Deletability. None of the proposed designs offers perfect support for deletion. In the SLBF
with 2 CBFs (Definition 3.1), deletability depends on both the allocated memory and the empirical
false negative rate of the learned model. Even in the LBF design with 3 SBFs (Definition 3.3), while it
supports guaranteed deletion, this benefit comes at a cost: the FNR increases as a result. Consequently,
to keep the FNR within acceptable bounds, the number of deletions performed in practice should be
purposefully limited. Nonetheless, such limitations are inherent to Bloom Filter due to its compact
and probabilistic nature, which intentionally trade exactness for space efficiency. That said, future
work could investigate whether better trade-offs exist to enhance deletability without compromising
performance or memory efficiency.

Evaluation. The evaluation of our designs could be further strengthened by incorporating real-world
datasets and exploring a broader range of parameter configurations. This would help demonstrate the
robustness and effectiveness of our designs across diverse application scenarios.

13

6.2 Future Work
SLBF with 2 CBFs vs. LBF with 2 CBFs. In Section 3.4, we examined how to optimize LBF with 2
CBFs in scenarios where constructing an SLBF is not feasible due to limited memory. However, we did
not analytically determine whether the LBF with 2 CBFs can outperform the SLBF with 2 CBFs when
both are constructible. Future work could derive the precise conditions under which the LBF variant
is preferable and assess their practicality. Such analysis could also generalize to comparisons between
LBF with 2 SBFs and the standard SLBF with 2 SBFs. This direction may benefit from adopting the
strategy used in Section 4 and 5.2 of [8].

More Design Options. Given the expansive design space, we have not explored all possible design
strategies. Future research could investigate approaches that use both CBF and SBF concurrently and
experiment with different filter positions. Additionally, we have not yet addressed the general case of
SLBF with 3 CBFs (Section 3.3). Future work may focus on solving this case, potentially eliminating
the need for manual exploration of various configurations.

Balance Tradeoffs. For our final design LBF with 3 SBFs (Definition 3.3), we evaluated its FPR,
deletability, and FNR. However, one aspect not addressed analytically is the trade-off between FPR and
FNR under a fixed total memory budget and dataset size. This analysis is particularly challenging due
to the inherently conflicting objectives of minimizing both FPR and FNR, and the need to determine
an optimal memory allocation strategy across the 3 filters. Similarly, while the SLBF with 2 CBFs
(Definition 3.1) achieves the best FPR, it exhibits the worst deletability. Balancing such trade-offs across
different design choices remains an open question for future work.

Generalizability to PLBF. Although our design focuses on SLBF and LBF, some aspects are applicable
to PLBF. For example, CBFs could be used to replace all SBFs in PLBF and compared against PDDBF
[9]. Additionally, one could consider adding an SBF for each CBF in the PLBF, or incorporate SBF into
the objective and constraints of PLBF’s optimization problem to balance the resulting FPR and FNR.

7 Conclusion
This work presents two new designs to enable deletion in Learned Bloom Filters (LBFs) and Sand
wiched Learned Bloom Filters (SLBFs): SLBF with 2 Counting Bloom Filters (CBFs) and LBF with 3
Standard Bloom Filters (SBFs). These designs offer different trade-offs: SLBF with 2 CBFs achieves the
lowest false positive rate (FPR), while LBF with 3 SBFs ensures guaranteed deletability at the cost of
slightly increased false negative rate (FNR).

Our evaluation confirms these trade-offs and highlights that no single design dominates across all
metrics. Future work could explore reinsertion mechanisms, more memory-efficient structures, and
analytical conditions under which different designs outperform each other. Multi-objective optimiza
tion may also help balance FPR and FNR under fixed memory budgets.

The code and data used in this study are included in the attached zip file, but not publicly released.

8 AI Usage Declaration
AI is used to improve the grammar and flow of report writing, as well as to double-check the quality
and correctness of derivations.

Bibliography
[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun. ACM, vol.

13, no. 7, pp. 422–426, Jul. 1970, doi: 10.1145/362686.362692.

[2] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix matching using bloom
filters,” in Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and

14

https://doi.org/10.1145/362686.362692

Protocols for Computer Communications, in SIGCOMM '03. Karlsruhe, Germany: Association for
Computing Machinery, 2003, pp. 201–212. doi: 10.1145/863955.863979.

[3] B. M. Maggs and R. K. Sitaraman, “Algorithmic Nuggets in Content Delivery,” SIGCOMM Comput.

Commun. Rev., vol. 45, no. 3, pp. 52–66, Jul. 2015, doi: 10.1145/2805789.2805800.

[4] J. Yan and P. L. Cho, “Enhancing Collaborative Spam Detection with Bloom Filters,” in 2006 22nd

Annual Computer Security Applications Conference (ACSAC'06), 2006, pp. 414–428. doi: 10.1109/
ACSAC.2006.26.

[5] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: a scalable wide-area Web cache
sharing protocol,” IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp. 281–293, 2000, doi:
10.1109/90.851975.

[6] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The Case for Learned Index
Structures,” in Proceedings of the 2018 International Conference on Management of Data, in
SIGMOD '18. Houston, TX, USA: Association for Computing Machinery, 2018, pp. 489–504. doi:
10.1145/3183713.3196909.

[7] K. Vaidya, E. Knorr, T. Kraska, and M. Mitzenmacher, “Partitioned Learned Bloom Filter.” [On
line]. Available: https://arxiv.org/abs/2006.03176

[8] M. Mitzenmacher, “A model for learned bloom filters, and optimizing by sandwiching,” in Pro2

ceedings of the 32nd International Conference on Neural Information Processing Systems, in NIPS'18.
Montréal, Canada: Curran Associates Inc., 2018, pp. 462–471.

[9] M. Zeng et al., “Two-layer partitioned and deletable deep bloom filter for large-scale membership
query,” Information Systems, vol. 119, p. 102267, 2023, doi: https://doi.org/10.1016/j.is.2023.102267.

[10] A. Sato and Y. Matsui, “Fast partitioned learned bloom filter,” in Proceedings of the 37th Interna2

tional Conference on Neural Information Processing Systems, in NIPS '23. New Orleans, LA, USA:
Curran Associates Inc., 2023.

[11] Z. Dai and A. Shrivastava, “Adaptive learned bloom filter (Ada-BF): efficient utilization of the
classifier with application to real-time information filtering on the web,” in Proceedings of the

34th International Conference on Neural Information Processing Systems, in NIPS '20. Vancouver,
BC, Canada: Curran Associates Inc., 2020.

[12] Y. Wu et al., “Elastic Bloom Filter: Deletable and ExpandableFilter Using Elastic Fingerprints,”
IEEE Transactions on Computers, p. 1, Mar. 2021, doi: 10.1109/TC.2021.3067713.

[13] A. Bishop and H. Tirmazi, “Adversary Resilient Learned Bloom Filters.” [Online]. Available:
https://eprint.iacr.org/2024/754

[14] T. Gerbet, A. Kumar, and C. Lauradoux, “The Power of Evil Choices in Bloom Filters,” in 2015

45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, 2015, pp.
101–112. doi: 10.1109/DSN.2015.21.

[15] P. Maini, Z. Feng, A. Schwarzschild, Z. C. Lipton, and J. Z. Kolter, “TOFU: A Task of Fictitious
Unlearning for LLMs.” [Online]. Available: https://arxiv.org/abs/2401.06121

[16] T. Al Mahmud, N. Jebreel, J. Domingo-Ferrer, and D. Sánchez, “Dp2unlearning: An Efficient and
Guaranteed Unlearning Framework for Llms,” 2025, doi: 10.2139/ssrn.5217160.

15

https://doi.org/10.1145/863955.863979
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.1109/ACSAC.2006.26
https://doi.org/10.1109/ACSAC.2006.26
https://doi.org/10.1109/90.851975
https://doi.org/10.1145/3183713.3196909
https://arxiv.org/abs/2006.03176
https://doi.org/https://doi.org/10.1016/j.is.2023.102267
https://doi.org/10.1109/TC.2021.3067713
https://eprint.iacr.org/2024/754
https://doi.org/10.1109/DSN.2015.21
https://arxiv.org/abs/2401.06121
https://doi.org/10.2139/ssrn.5217160

	Abstract
	Introduction
	Motivation
	Counting Bloom Filter
	Learned Bloom Filter
	Deletable Learned Bloom Filter
	Our Focus and Approach

	Technical details
	Definition
	SLBF with 2 CBFs
	SLBF with 3 CBFs
	LBF with 2 CBFs
	LBF with 3 SBFs

	Evaluation
	Results

	Related Work.
	Discussion
	Limitations
	Future Work

	Conclusion
	AI Usage Declaration
	Bibliography

