Project Report : CS 4644

Alejandro Hinojosa Canada

acanada6@gatech.edu

Pablo San Francisco

pfrancisco6@gatech.edu

Yuxiang Qiu

yuxgiu@proton.me

Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA

Abstract

Over the past few years, text recognition has become
an important task, and an important subset of this disci-
pline is formula recognition, i.e., the translation of complex
mathematical symbols from images into LaTeX code. While
some solutions exist, they are either costly, require propri-
etary software, or do not utilize state-of-the-art architec-
tures. This project aims to design a model that achieves
state-of-the-art performance while allowing users to run the
model locally. To achieve this goal, we implemented sev-
eral state-of-the-art encoders and decoders and experimen-
tally evaluated their performance, which was shown to be
reasonably good. In this report, we present our approach,
describe our experimental setup, analyze the results, and
discuss future work to improve the model.

1. Introduction/Background/Motivation

The conversion of complex mathematical functions from
images into LaTeX format is a critical tool for academic and
technical documentation. Despite existing solutions, there
remains a significant need for more accessible, efficient, and
cost-effective methods. Current tools are not open-source
and costly [1], limiting their improvement and adaptation
by the academic community.

Our project, LaTeXify, aims to develop a local, free tool
that is computationally inexpensive to convert images of
mathematical functions into LaTeX code, directly address-
ing the shortcomings of current non-open-source, paid so-
lutions, making educational materials more accessible, and
facilitating the exchange of scientific ideas.

Specifically, our work involves building an encoder that
extracts information from images and a decoder that outputs
LaTeX code. This includes integrating and testing different
CNN architectures such as ConvNeXt [2] and Swin Trans-
formers [3], as well as different decoders such as Trans-

former [4] and GPT [5]. At the same time, our project seeks
to contribute general architectural guidelines for designing
image-to-text systems, which could be beneficial across var-
ious domains where image-based data need to be converted
into editable text formats.

The field of transforming images into LaTeX code
has seen various approaches, with significant contributions
from the academic community aiming to improve accuracy
and reduce computational overhead. Early methods em-
ployed traditional image processing techniques, but recent
advances have leveraged deep learning for more precise re-
sults.

For instance, [4] introduced a global context-based net-
work utilizing Transformer architecture to enhance the fea-
ture extraction process, achieving significant improvements
in accuracy and achieving a final BLEU score of 89.72%.
[6] explored the use of visual attention to facilitate image-
to-LaTeX conversion, utilizing a model without feature
pooling and achieveing a BLEU score of 89.09%. [7] ap-
plied a Vision Transformer (ViT) to solve this problem,
highlighting the potential of Transformers to solve this
problem and achieving a BLEU score of 88%.

2. Approach

Our model architecture consists of an encoder and a de-
coder, where the encoder extracts the feature representation
from the input formula image, and then passes the features
to the decoder, which combines these with the output em-
bedding to predict the next possible token of each position
through the attention mechanism.

The reason we think our model can beat the current
SOTA in this task is because we use a SOTA encoder and
a SOTA decoder. By combining the SOTA encoder and de-
coder, it is reasonable to expect that our model will outper-
form previous models based on ResNet [4] or vanilla CNN
encoders [0, 8] and RNN [8], LSTM [6] or GRU [4] de-
coders.
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Figure 1. Architecture of Latexify model

2.1. Dataset

The dataset chosen for this task was I2L-140k [6]. This
dataset consists of 140k images and is the end result of pre-
processing the im2latex-100k dataset [9], which involves
parsing the latex formulas, filtering and normalizing the ex-
tracted formulas by re-generating the latex from the parse
tree, as well as tokenization.

Attribute Explanation
image Name of the image file containing the
formula.
height The height of the image in pixels.
width The width of the image in pixels.
word2id_len | Length of the sequence after convert-
ing words in the formula to their re-
spective IDs in a dictionary.
word2id Sequence of dictionary ID numbers

corresponding to the words or symbols
in the LaTeX formula.

The actual LaTeX formula in ASCII
text, representing the mathematical
formula depicted in the image.

latex_ascii

padded_seq | The sequence of IDs padded to a fixed
length for uniform processing.
seq_len Original length of the sequence before

any padding is applied.

Table 1. Attributes of I2L-140K.

Looking closely and analyzing the distribution of the
dataset, we can see that the size of the images in the dataset
varies greatly. The width of the images varies greatly from
a minimum of only 3 pixels to a maximum of 1086 pixels
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Figure 2. A training sample: the top is the input formula image
and the bottom is the target sequence y

with an average width of about 521.49 pixels and a standard
deviation of 221.75 pixels. On the other hand, the height of
the image varies from 3 pixels to 126 pixels with an aver-
age height of about 64.55 pixels and a standard deviation of
22.29 pixels. This variability in image dimensions suggests
a diverse set of images in terms of size.

Turning to the formulas, which are represented in La-
TeX, the lengths (in characters) of these formulas also have
a wide range. The shortest formula consists of only a single
character, whereas the longest stretches to 595 characters.
The average length of a formula is 162.1 characters, with a
standard deviation of 80.63 characters. This indicates that
while many formulas are of moderate length, there is a con-
siderable range, including some very lengthy expressions.
Furthermore, the analysis shows that 3.93% of the formu-
las are multi-lined. This suggests that while the majority of
formulas are single-line formulas, a significant number of
formulas employ more complex structures across multiple
lines, indicating the diversity of the dataset we used.

Math Symbol | Count
Ii 22044
9141
15451
2102
17331
6436
6059
66
135124
15451
6706
229

Table 2. Examples of Math Symbols and Counts.
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Looking more deeply into the content of the formulas,
we can see that the symbols that appear are also diverse, to-
taling 518. The distribution of these symbols is not uniform,
as some symbols are used more than others in mathemati-
cal formulas, and looking at the distribution of 12 of these
symbols, we can see that it ranges from almost all formulas
having the symbol to less than 1% of formulas having the



symbol. This could pose a potential problem for training, as
the model may not have enough samples of the symbol to
consistently interpret it correctly. An example of a training
sample is shown in Figure 2.

2.2. Encoder

We explored a variety of encoder architectures to deter-
mine the most effective model for our needs. Thus, we
specifically selected the newest and most promising archi-
tectures, including ResNet, ConvNeXt, and Swin Trans-
former.

The input to each encoder was a padded image with di-
mensions (3, 1088, 128), where 3 represents the number of
channels, 1088 is the width, and 128 is the height of the im-
age. The output of the encoder is a stack of feature maps in
REXWxH “where C represents the output feature channel
and W and H represent the width and height of the feature
map.

We used torchvision [10] to implement two encoders,
the ConvNeXt and Swin transformers. This library simpli-
fies the implementation of these models and includes pre-
trained versions of them that we have also tested. For ease
of customization, our ResNet encoder is based on a previous
implementation [11].

2.2.1 ResNet

Different sizes of ResNet [12] have been tested including:
resnetl8, resnet34, resnet50, resnetl01, resnetl52. Aver-
age pooling, flattening, and linear layer have been removed
from the implementation because the output of ResNet will
be used for the decoder and we only want to use ResNet as
a feature extractor to extract features from the image.

2.2.2 ConvNeXt

Different sizes of ConvNeXt [2] have been tested including:
convnext-tiny, convnext-small, convnext-base and convnext-
large. Average pooling and the fully connected layer have
been deleted from the model for the same reasons as in
ResNet. In addition to these four standard implementa-
tions, we have implemented a customized ConvNeXt based
on convnext-tiny. With this implementation, we can gener-
ate customized instances of ConvNeXt with different output
vector dimensions.

2.2.3 Swin Transformer

For the same reason, for Swin Transformers [3], we omit the
pooling, flatten and linear layers. The models tested were
swin-v2-t, swin-v2-t and swin-v2-b.

2.3. Decoder

We also explored a variety of SOTA decoder architec-
tures, including Transformer and GPT.

The decoder takes the flattened and transposed output of
the encoder output z; € RFW*C and a sequence of tokens
x9 € N¥ (where L is the length of the sequence) as input.
It produces logits y € RUWHL)XV ag output (where V is
the size of the vocabulary on which the decoder operates).

2.3.1 Transformer

The Transformer [13] architecture consists of an encoder
that encodes the input (in our case the output of the encoder)
and then uses an attention layer to perform cross-attention to
the output embedding (in our case another input, a sequence
of tokens). Finally, it predicts the next token for each token
in the provided token sequence.

To implement the transformer model, we mainly rely on
the transformer module provided in PyTorch [14]. On top
of that, we implemented the embedding layer and positional
encoding mentioned in [13] and added a generator module
at the end to compute logits and losses.

Embedding Layer and Positional Encoding: The input
x9 € NT is passed through the embedding layer to output
embedding vectors E € RY*P (where D is the dimension
of each embedding vector). Then, a pre-computed fixed po-
sitional encoding is added to E to add position information
to the embedding vectors.

Transformer: The transformer module then uses 1 €
RHWXC a5 the input embedding and £ € RE*P as the
output embedding and performs a cross-attention between
them, outputting O € RY*P. The transformer module re-
quires that C' = D.

Generator: The generator takes O € RE*P as input,
produces prediction Pred € RL*V, and calculates the loss
if the target is provided.

232 GPT

The GPT [5] is a decoder-only architecture that consists of
a decoder that decodes the input and predicts the next token
for each token in the input. Internally, it uses self-attention
layer to perform attention on the input. In our implemen-
tation, we adapted the [15] implementation to prepend the
encoder output to a list of embedding vectors, which are
then fed as inputs to the transformer block.

Positional Encoding: Another difference between the
GPT and the transformer is that the transformer uses a fixed
positional encoding while the GPT uses a learnable posi-
tional encoding.



3. Challenges
3.1. Dataset Preprocessing

In the training workflow, we first load all the datasets as
data frames and then pass them to the CustomLatexDataset
class, which will fetch each image and its corresponding
label as the training starts. Since the images and labels in
the dataset vary in size, we had to preprocess them. We
initially decided to process them on-the-fly, i.e., pad them
when needed. However, it is not wise to do so because the
same data will be used multiple times in different epochs
and in training different models. To eliminate the need for
repetitive preprocessing, we decided to preprocess all data
before training and then simply load the preprocessed data
on-the-fly.

The preprocessing of all the images (padding them with
ones so that the images are the same size) is done in batches
rather than all at once, as this is a very memory-intensive
task. Due to disk size limitations, we cannot preprocess
the labels ahead of time, so we must preprocess the labels
on-the-fly in the CustomLatexDataset class: pad them with
special padding tokens up to the size of 151, which is the
size of the longest tokenized formula in the dataset. In
the case of the transformer model, an additional start-of-
sequence token is also added at the beginning of the label.
We refer the reader to Appendix B for a detailed description
of our tokenization strategy.

3.2. Training

Another challenge was the inability of our models to
learn properly. After trying multiple combinations of en-
coders and decoders, the accuracy of all our models (with
parameter counts ranging from a few million to a hundred
million) was stuck at around 35% (GPT) and 15% (trans-
former).

Using PyTorch implementations with pre-trained
weights was the first solution we tried. We tried this
because we thought that the dataset we were operating
on was not large enough for the model to learn how to
extract meaningful information from the data. After a few
attempts, we realized that the performance did not improve,
but in fact got worse. One reason for this could be that the
pre-trained weights were not suitable for our specific task,
so this introduced overhead as our model needed to forget
and re-learn new weights.

The second solution we tried was to reduce the dimen-
sion of the embedding vectors. This was based on the in-
tuition that the model might be too complex for our task,
resulting in the inability to extract meaningful representa-
tions. Especially in our case, since our dataset is not very
large, a less complex model with fewer degrees of freedom
may be better for making predictions in regions with little
or no data. Therefore, we decided to reduce the dimension

of the embedding vectors. As a result, the accuracy of our
model with GPT decoder was significantly improved (by al-
most a factor of 2).

The third solution we tried specifically for the trans-
former was to apply proper initialization. We realized that
we had not properly initialized the embedding and fully
connected layers previously. After making these changes,
the accuracy of the transformer architecture improved from
15% to about 30%.

4. Experiments and Results
4.1. Evaluation Metrics

There are 4 metrics used to measure the effectiveness of
our model.

Accuracy: Standard multiclass accuracy using micro-
averaging and ignoring the index of the padding token.

BLEU [16]: Compare the n-gram (1,2,3,4) of the
machine-generated text with the n-gram of the reference
text to derive a score, which is then multiplied by a brevity
penalty to account for translations that are too short to arrive
at a final BLEU score.

Perplexity [|7]: Exponent of the cross-entropy loss of
the model.

Number of weights: This is an implicit measure of suc-
cess because the smaller the weights, the faster the model
runs locally.

4.2. Loss function

Cross-entropy [18] is used as the loss function of our
model. It is suitable for classification tasks like ours where
the output for each predicted token is a probability distri-
bution across the vocabulary. The loss increases as the pre-
dicted probability diverges from the actual label.

Given a true distribution p and an estimated distribution
q, the cross-entropy between the distributions is defined as:

H(p,q) =Y p(x)logq(z)

In our context, p represents the true distribution, where the
true character class has a probability of 1 and all others O
and q is the predicted probability distribution over the vo-
cabulary by our model. When training our model, we cal-
culate the cross-entropy loss for each token, and then sum
and average it to get the final loss.

4.3. Optimizer

The AdamW [19] optimizer was used for training. It is
an improvement on the Adam optimizer that improves train-
ing and generalization by decoupling weight decay from
gradient updating. Optimizers such as Adam use weight
decay as part of the gradient update, which can lead to



less efficient regularization, especially in the case of adap-
tive learning rates. AdamW improves on this by applying
weight decay directly to the weights in addition to the gra-
dient update.

4.4. Experiment Results

Multiple combinations of encoder and decoders were
tested. We struggle to get good results until reducing the
embedding dimension. The first 4 rows of the Table 3
show the result before the dimensionality reduction, and
the last row shows the result of our final best model, which
achieves 65% accuracy with the customized ConvNeXt en-
coder (which generates embedding of dimension 64) and
the GPT decoder.

By comparing different rows, we can see a significant
increase of accuracy and a decrease on the perplexity in the
last row of Table 3. This is our main finding in this paper,
namely that in some use cases (i.e., when the vocabulary is
not large), the decoder does not need as large an embedding.
The reasons why this can happen are discussed in 3.2.

We also evaluated the best performing model for its au-
toregressive ability and measured its BLEU score on the test
dataset. We used the beam search [20] with a beam size 2
to reduce the probability of the model being trapped at sub-
optimal solutions when making predictions. However, dur-
ing the evaluation process, we found that the model always
outputs the same formula no matter what the input image
is. We hypothesize that this occurs because the CNN is not
powerful enough to extract useful features from the image
(things in the center of the image).

To test our hypothesis, we loaded two random examples
from the dataset and found that the cosine similarity be-
tween these two outputs of the encoder is 1, which means
that the encoder produces exactly the same output for these
two different images, which explains why the decoder de-
codes the same formula every time. [21] gives a possible ex-
planation: padding the image with 1 (white) will adversely
interfere with the optimization of the kernel’s weights, thus
preventing the CNN from learning how to correctly extract
the information in the image. The recommended solution,
suggested by [21], is to pad the image with O as it is proven
that this does not adversely affect backward propagation
and speeds up forward propagation.

5. Discussion
5.1. Ablation Study

To further investigate how encoder and decoder con-
tributes to the performance of our model, we performed an
ablation study. The results are shown in Table 4.

As can be seen from the table, each transformer block in
the decoder contributes significantly to the accuracy of the
prediction, since removing a block from the decoder results

in a 7-8% decrease in accuracy.

However, for ConvNeXt, we can see that removing 1 or
even 2 ConvNeXt Blocks does not change the accuracy of
the overall model, which means that the ConvNeXt encoder
has not yet learned how to properly extract features from
images. This finding further confirms our hypothesis in 4.4.

5.2. Limitations and Future Work

Currently, LaTeXify is unable to operate autoregressively
in a meaningful way because of the poor performance of
the encoder and therefore cannot be used for any practical
applications. Future work on the LaTeXify project will fo-
cus on addressing poor encoder performance, starting with
trying to pad the image with zeros instead of ones, while
keeping the model small enough to run locally. Our goal is
to release the model so that everyone can convert images to
formulas in a reliable way for free.

6. Work Division

The contributions from each team member are provided
in Table 5.



Model Train Acc. | Perplexity | Number of Weights (in millions) | Embedding Dimension
resnet50-gpt 0.34 22.19 328.10 2048
convnext_tiny-gpt 0.35 21.35 92.9 768
swin_v2_b-gpt 0.34 21.84 71.03 1024
convnext_custom-transformer 0.29 256.1 0.97 64
convnext_custom-gpt 0.65 4.26 0.90 64

Table 3. The performance of LaTeXify model. The best performance is indicated in bold.

Ablation Test Acc.
0.6294
-1 Transformer Block 0.5481
-2 Transformer Blocks 0.4789
-1 ConvNeXt Block 0.6294
-2 ConvNeXt Blocks 0.6294

Table 4. The result of the ablation study. The ablation is based on
the best performing model convnext_custom-gpt.
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A. Project Code Repository

Our code base is divided into two main directories: src
and test. The first directory contains the source code that
implements our models (encoders and decoders), metrics,
training and generation functions. The second directory
contains the unit test cases we have written for our mod-
els and metrics. I will discuss the src folder in more detail
below:

 encoder: This subfolder contains our implementations
of ResNet, ConvNeXt and Swin Transformer.

* decoder: This subfolder contains our implementation
of the transformer (based on PyTorch [14]) and GPT-
based decoder-only architecture (based on minGPT

[15D).

¢ analysis: This sub-folder contains the metrics used for
our analysis. In it, we re-export the MulticlassAccu-
racy class [22], and the Perplexity class [23]. Based
on the BLEUScore class in [23], we fixed a bug in the
brevity penalty calculation and designed our class for
calculating the BLEU score.

* train.py: This file contains the code to train the model.

* models.py: This file contains the definition of our La-
texifyModel.

» generate.py: This file contains an implementation of
the beam search and generate functions that generate
text from the input formula image.

¢ data_handler.py and data_loader.py: These two files
implement the data loading functions and the interface
Dataset defined by PyTorch, which makes it easy to
integrate the dataset into the training process.

The Github repository for our final projectis at: https:
//github.com/Alex44lel/latexifyl.0.

B. Tokenization

We used two different tokenization strategies based on
the decoders used by our model.

For the transformer decoder, we added three additional
tokens to the vocabulary: a start-of-sequence token, a end-
of-sequence token and a padding token. The reason we need
the start-of-sequence token is that we need to use a token at
the beginning to perform cross attention with the embed-
ding vectors extracted from the image, which we can then
use to instruct the model to autoregressively generate the
formula text. As the name implies, the end-of-sequence to-
ken signals to the model that the input ends. We separate it
from the padding token because we ignore the padding to-
kens when calculating the loss, and if we just use a padding
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token to mark the end of the generated text, the model may
not know how to express the end of the equation, which can
cause trouble when it is used autoregressively later on.

For the GPT decoder, we added only two tokens to the
vocabulary: an end-of-sequence token and a padding token.
We did not add a start-of-sequence token because the model
output at the position of the last prepended hidden input
vector can be considered as a prediction of the first token
that the model should output. Therefore, we don’t need an
additional start-of-sequence token to instruct the model to
output the formula text.



